









## **CHEMISTRY**





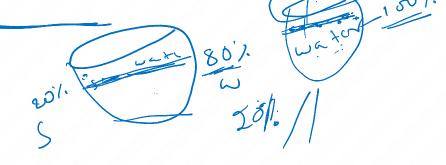
© Copyrights 2022 by Rizee/ A Product of MyLearning Plus Pvt.Ltd —

#### **VERY SHORT ANSWER QUESTIONS:**

#### 1. State Raoult's Law.

#### Ans:

Raoult's law states that "At a given temperature the relative lowering of vapour pressure of dilute solution containing non – volatile solute is equal


to the mole fraction of solute in the solution".

$$\frac{P^0 - P_s}{P^0} = X_2 ;$$

Where  $P^0 = Vapour$  pressure of pure solvent

 $P_s$  = Vapour pressure of solution of non volatile solute

 $X_2$  = Mole fraction of solute



\_tho+Sugar



#### 2. State Henry's Law.

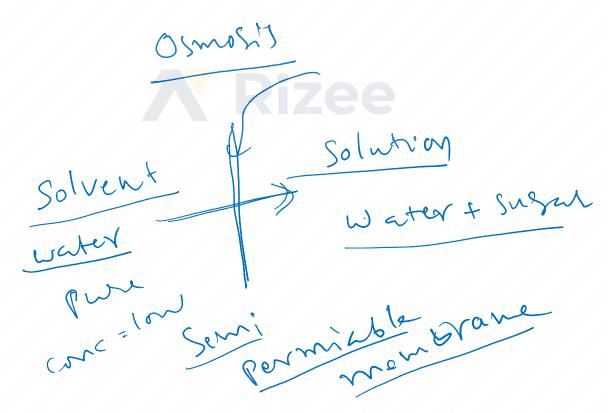
#### Ans:

Henry's law states that "At a given temperature the partial pressure of the gas in vapour phase (p) is proportional to the mole fraction of the gas(x) in the solution".

$$\mathbf{P} = \mathbf{K}_{\mathbf{H}} \underline{\mathbf{x}}$$



x = Mole fraction of the gas


$$K_H$$
 = Henry's law constant



#### 3. Define osmotic pressure.

#### Ans:

The pressure required to just stop osmosis is called osmotic pressure.





#### 4. What are isotonic solutions?

#### Ans:

The solutions having same osmotic pressure at a given temperature are called Isotonic solutions.

Ex: Blood is isotonic with saline solution

$$\left(0.9\%\left(\frac{w}{v}\right)NaCl\right)$$



150 - romal frail 1. P.

### 5. Define Molarity?

#### Ans:

The number of moles of the solute present in one litre of solution

$$M = \frac{w}{GMW} \times \frac{1000}{V(mL)}$$

$$Solution$$

$$Gold = \frac{w}{V(mL)} \times \frac{1000}{V(mL)}$$

$$Gold = \frac{w}{V(mL)} \times \frac{1$$

#### 6. Define Molality?

#### Ans:

The number of moles of the solute present in 1 kg of solvent is called molality of the solution.

Molality = 
$$\frac{w}{GMW} \times \frac{1000}{wt.of solvent in gm}$$

x 6.:023×1023

Rizee

you solventer

J. o's Southian

#### 7. What is ebullioscopic constant?

#### Ans:

The elevation in boiling point produced when 1 mole of solute is dissolved in 1000g of solvent is called Ebullioscopic constant.

orved in loog of solver

30/2m



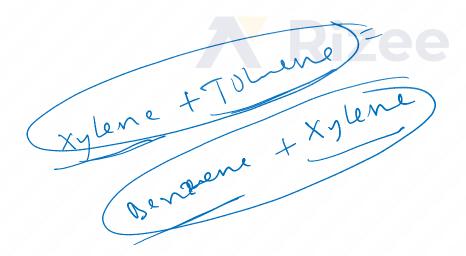


#### 8. What is cryoscopic constant?

#### Ans:

The depression in freezing point produced when 1 mole of solute is dissolved in 1000g of solvent is called cryoscopic

constant.


Pure water

Solvery

#### 9. What are meant by Azeotrope's?

#### Ans:

Azeotrope's are the binary mixtures having same composition in liquid, vapours phase & boils at a constant temperature.



### N

#### **SOLUTIONS**

Solution

water + Sugar

cmc

#### 10. What is osmosis?

#### Ans:

The flow of solvent molecules from pure solvent to the solution, when they are separated by a semi – permeable membrane is known as osmosis.

1111



11. Calculate the mole fraction of  $H_2SO_4$  in a solution containing 98%

 $H_2SO_4$  by mass.

#### Ans:

98% H<sub>2</sub>SO<sub>4</sub> means 98 parts of H<sub>2</sub>SO<sub>4</sub> is present in 100 parts of solution.

No. of moles of 
$$H_2SO_4 = \frac{98}{98} = 1$$

Wt. of 
$$H_2O = 100 - 98 = 2 \text{ gm}$$
; M.w of  $H_2O = 18$ 

No. of moles of 
$$H_2 0 = \frac{2}{18} = 0.1$$

Total moles in solution = 1 + 0.1 = 1.1

Mole fraction of 
$$H_2SO_4 = \frac{\text{No.of moles of}H_2SO_4}{\text{Total moles of solution}} = \frac{1}{1.1} = 0.9$$

No. of moles of  $H_2SO_4 = \frac{98}{98} = 1$  Pize  $\frac{98}{98} = 1$  Wt. of  $H_2O = 100 - 98 = 2$  gm; M.w of  $H_2O = 18$  No. of moles of  $H_2O = \frac{2}{18} = 0.1$ 



12. A solution of glucose in water is labelled as 10% w/w. What would be the molarity of the solution?

**Ans:**  $10\% \left(\frac{w}{w}\right)$  glucose solution means

100gms of solution contains 10gm of glucose

∴ weight of glucose (w) = 10 gmsweight of water (w) = 90 gms

∴ Volume of solution = 90 ml

$$\therefore \text{ Molarity} = \frac{\text{w}}{\text{gmw}} \times \frac{1000}{\text{v in ml}}$$
$$= \frac{10}{180} \times \frac{1000}{100} = 0.617 \text{ M}$$

770). = Soh

(6 Mar 06 72 + 12 + 66 80 = 180

13. A solution of sucrose in water is labelled as 20% w/w. What would be the mole fraction of each component in the solution?

**Ans:**  $20\% \left(\frac{w}{w}\right)$  sucrose solution means

20gms of sucrose present in 100gm of solution

 $\therefore$  weight of sucrose (w) = 20 gms

Sucrose: 
$$w_1 = 20$$
;  $n_1 = \frac{w_1}{m_1} = \frac{20}{342} = 0.05848$ 

Sucrose: 
$$w_1 = 20$$
;  $n_1 = \frac{w_1}{m_1} = \frac{20}{342} = 0.05848$ 

Water:  $w_2 = 80(100 - 20)$ ;  $n_2 = \frac{w_2}{m_2} = \frac{80}{18} = 4.45$ 

Mole fraction sucrose:  $(X_1) = \frac{n_1}{m_2} = \frac{0.05848}{18} = 0.043$ 

Mole fraction sucrose : 
$$(X_1) = \frac{n_1}{n_1 + n_2} = \frac{0.05848}{4.503} = 0.013$$

Mole fraction water : 
$$(X_2) = 1 - X_1 = 1 - 0.013 = 0.987$$

mole traction & component component of model

© Copyrights 2022 by Rizee/ A Product of MyLearning Plus Pvt.Ltd



14. If the osmotic pressure of glucose solution is 1.52 bar at 300K.

What would be its concentration if  $R = 0.083 L bar mol^{-1} K^{-1}$ ?

#### Ans:

Given Osmotic pressure  $\pi = 1.52$  bar

Absolute temp T = 300 K

$$R = 0.083 \text{ L bar mol}^{-1} \text{ K}^{-1}$$

$$C = ?; \pi = CRT$$
,

$$1.52 = C \times 0.083 \times 300$$

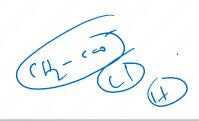
$$\therefore C = 0.061 \text{ M}$$





15. The depression in freezing point of water observed for the same amount of acetic acid, dichloroacetic acid and trichloro acetic acid increases in the order given above. Explain briefly.

#### Ans:


As we move from  $CH_3COOH$  to  $CCl_3COOH$  the degree of dissociation ( $\alpha$ ) increases. So no. of particles increases. As no. of the particles increases depression in freezing point also increases.

Order of acidic strength:

 $CH_3COOH < CH_2CICOOH < CHCl_2COOH < CCl_3COOH$ 

(100) (ATT)





(HO) (A)



16. Define mole fraction.

#### Ans:

Mole fraction is the ratio of number of moles of one component to the total number of moles of all components

Mole fraction of solute =  $\frac{\text{No. of moles of component}}{\text{Total no. of moles of all}}$ components in solution



#### **SHORT ANSWER QUESTIONS:**

1. What is relative lowering of vapour pressure? How is it useful to determine the molar mass of a solute?

#### Ans:

- i. The ratio of lowering of vapour pressure  $(p^0-p_s)$  to the vapour pressure of the pure solvent  $(p^0)$  is known as the relative lowering of vapour pressure  $\left(\frac{p^0-p_s}{p^0}\right)$
- ii. According to Raoult's law the relative lowering of vapour pressure of a dilute solution containing non volatile solute is equal to the mole fraction of the solute.



Duren Duren

Soll waste

### N

#### **SOLUTIONS**

iii. The molecular weight of solute can be calculated as follows. i.e.

$$\frac{p^0-p_s}{p^0}=\frac{n_2}{n_1+n_2} \ \left(\text{Since} \ x_2=\frac{n_2}{n_1+n_2}\right)\!. \ \text{Where} \ n_1 \ \text{and} \ n_2 \ \text{are the number of}$$
 moles of solvent and solute respectively present in the solution. For dilute solutions  $n_2 \ll n_1$ , hence  $n_2$  can be neglected in the denominator.

$$\frac{p^{0}-p_{s}}{p^{0}} = \underbrace{n_{2}}_{n_{1}}; \underbrace{p^{0}-p_{s}}_{p^{0}} = \underbrace{w_{2}}_{M_{2}} \times \underbrace{\frac{M_{1}}{w_{1}}}_{w_{1}} \Rightarrow M_{2} = \underbrace{\frac{w_{2} \times M_{1} \times p^{0}}{w_{1}(p^{0}-p_{s})}}_{w_{1}(p^{0}-p_{s})}$$

Where;  $w_1 \neq wt$ . of solvent;  $w_2 = wt$ . of solute;

 $M_1 = Molecular$  weight of solvent

 $p_0 = V.P$  of pure solvent;  $p_s = V.P$  of solution;

M<sub>2</sub> = Molecular weight of unknown solute

Solverte: 25

vi. gun





2. How many types of solutions are formed? Give an example for type of solution.

#### Ans:

There are three types of solutions. They are

- (a) Gaseous Solutions: The solutions in which solvent is a gas and solute can be either solid, liquid or gas are known as gaseous solutions.
- (b) Liquid Solutions: The solutions in which solvent is a liquid and solute can be either solid, liquid or gas are known as liquid solutions.
- (C) Solid Solutions: The solutions in which solvent is a solid and solute can be either solid, liquid or gas are known as solid

Solvent large Solvent large



| Type of          | Solut    | Solvent | Common Examples                    |
|------------------|----------|---------|------------------------------------|
| Solution         | е        |         |                                    |
| Gaseous          | Gas      | Gas     | Mixture of oxygen and nitrogen     |
| Solutions        | Liquid   | Gas     | gases 182                          |
|                  | Solid    | Gas (   | Chloroform mixed with nitrogen gas |
|                  | Gas      | Liquid  | Camphor in nitrogen gas            |
| Liquid Solutions | Liquid   | Liquid  | Oxygen dissolved in water          |
|                  | Solid    | Liquid  | Ethano dissolved in water 3        |
|                  | Gas.     | Solid   | Glucose dissolved in water         |
| Solid Solutions  | Liquid   | Solid   | Solution of hydrogen in palladium  |
|                  | Solid    | Solid   | Amalgam of mercury with sodium     |
|                  | Baleduic | Solid   | Copper dissolved in gold           |
|                  | gus      | 2019 N  |                                    |

Sw. Ke var Sw. Ke var iv gar

# **THANK YOU**

