TOP 30 ANTICIPATED QUESTIONS-MARCH (PHYSICS)

BASED ON J EE-MAINS 2021 ANALYSIS (FEB ATTEMPT)

A Product of MyLearning Plus Pvt. Ltd.

JEE-MAINS-2021 Anticipated Questions-March

1 A gas $(\gamma=1.3)$ is enclosed in an insulated vessel fitted with insulating piston at a pressure of $10^{5} \mathrm{~N} / \mathrm{m}^{2}$. On suddenly pressing the piston the volume is reduced to half the initial volume. The final pressure of the gas is
(A) $2^{0.7} \times 10^{5}$
(B) $2^{1.3} \times 10^{5}$
(C) $2^{1.4} \times 10^{5}$
(D) None of these

Answer: (B)

JEE-MAINS-2021 Anticipated Questions-March

Explanation :

$\because \mathrm{PV}^{\gamma}=\mathrm{k}$ (constant) $\Rightarrow \mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}$
$\Rightarrow P_{2}=P_{1}\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}=2^{1.3} \times 10^{5} \quad\left(\because \mathrm{~V}_{2}=\frac{\mathrm{V}_{1}}{2}\right)$

JEE-MAINS-2021 Anticipated Questions -March

2. At $27^{\circ} \mathrm{C}$ a gas is suddenly compressed such that its pressure becomes $\frac{1}{8}$ th of original pressure. Tem perature of the gas will be $(\gamma=5 / 3)$
(A) 420 K
(B) $327{ }^{\circ} \mathrm{C}$
(C) 300 K
(D) $-142^{\circ} \mathrm{C}$

Answer: (D)

JEE-MAINS-2021 Anticipated Questions-March

Explanation :

$\mathrm{T}^{\gamma} \mathrm{P}^{1-\gamma}=\mathrm{k}$ (constant) $\Rightarrow \mathrm{T} \propto \mathrm{P}^{\frac{\gamma-1}{\gamma}}$
$\Rightarrow \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\frac{\gamma-1}{\gamma}}=\left(\frac{1}{8}\right)^{\frac{5 / 3-1}{5 / 3}}$
$\mathrm{T}_{2}=300 \times\left(\frac{1}{8}\right)^{0.4}=131 \mathrm{~K}=-142^{\circ} \mathrm{C}$

JEE-MAINS-2021 Anticipated Questions -March

3. Column I contains height (in m) of a TV tower. Column II contains distance (in Km) up to which TV transmission can be received. (Radius of the earth $6.4 \times 10^{6} \mathrm{~m}$

List 1 List 2
A. $75 \quad \mathrm{I} .31$
B. 60 II. 28
C. 50 III. 25
D. 80 IV. 32

JEE-MAINS-2021 Anticipated Questions-March

(A) $A->1, B->I I I, C->I V, D->I I$
(B) $A->1, B->I I, C->$ III, $D->$ IV
(C) $A->$ III, $B->I, C->I V, D->I I$
(D) $A->|V, B->I I I, C->I I, D->|$

Answer: (B)

Explanation:
$\mathrm{d}=\sqrt{2 \times \mathrm{R} \times \mathrm{h}}$

JEE-MAINS-2021 Anticipated Questions -March

4. Output Y is given by
(A) $(\bar{X}+\bar{Y}) \cdot Z$

(B) $(\mathrm{X}+\mathrm{Y}) \mathrm{Z}$
(C) $(\mathrm{X}+\mathrm{Y}) \overline{\mathrm{Z}}$
(D) $\bar{X} \cdot \bar{Y}+\bar{Z}$

Answer: (A)

JEE-MAINS-2021 Anticipated Questions-March

Explanation :

$\mathrm{W}=\mathrm{W}_{1} \cdot \mathrm{Z}=(\overline{\mathrm{X}}+\overline{\mathrm{Y}}) \cdot \mathrm{Z}$

JEE-MAINS-2021 Anticipated Questions-March

5. The approximate ratio of resistances in the forward and reverse bias of the PNjunction diode is
(A) $10^{2}: 1$
(B) $10^{-2}: 1$
(C) $1: 10^{-4}$
(D) $1: 10^{4}$

Answer: (D)

JEE-MAINS-2021 Anticipated Questions -March

Explanation :

Resistance in forward biasing $\mathrm{R}_{\text {forward }} \approx 10 \Omega$
And resistance in reverse biasing $\mathrm{R}_{\text {reverse }} \approx 10^{5} \Omega$
$\Rightarrow \frac{\mathrm{R}_{\text {forward }}}{\mathrm{R}_{\text {reverse }}}=\frac{10}{10^{5}}=\frac{1}{10^{4}}$

JEE-MAINS-2021 Anticipated Questions-March

6. Different voltages are applied across a P-N junction and the currents are measured for each value. Which of the following graphs is obtained between
(A) voltage,శnd current
(C)

(D)

Answer: (C)

JEE-MAINS-2021 Anticipated Questions -March

Explanation :

$\mathrm{P}-\mathrm{N}$ junction has low resistance in one direction of potential difference +V , so a large current flows (forward biasing). It has a high resistance in the opposite potential difference direction -V , so a very small current flows (reverse biasing)

JEE-MAINS-2021 Anticipated Questions-March

7. The diode used in the circuit shown in the figure has a constant voltage drop of 0.5 V at all currents and a maximum power rating of 100 mW . What should be the value of the resistor R, connected in series with the diode for obtaining maximum current?
(A) 1.5Ω
(B) 5Ω

(C) 6.67Ω
(D) 200Ω

Answer: (B)

JEE-MAINS-2021 Anticipated Questions-March

Explanation :

Current through circuit,
$\mathrm{I}=\frac{\mathrm{P}}{\mathrm{V}}=\frac{\left(100 \times 10^{-3}\right)}{0.5}=0.02 \mathrm{~A}$
Voltage drop across $\mathrm{R}=15-0.5=10 \mathrm{~V}$
Hence, $R=\frac{1}{0.2}=5 \Omega$

JEE-MAINS-2021 Anticipated Questions-March

8. If for hydrogen $C_{p}-C_{V}=m$ and for nitrogen $C_{p}-C_{V}=n$, where C_{p} and C_{V} refer to specific heats per unit mass respectively at constant pressure and constant volume, the relation between m and n is (molecular weight of hydrogen $=2$ and molecular weight of nitrogen $=14$)
(A) $n=14 \mathrm{~m}$
(B) $\mathrm{n}=7 \mathrm{~m}$
(C) $\mathrm{m}=7 \mathrm{n}$
(D) $m=14 n$

Answer: (C)

JEE-MAINS-2021 Anticipated Questions -March

Explanation :

$C_{p}-C_{V}=m$,
For hydrogen $\left(M_{1}=2\right) C_{p}-C_{V}=n$,
Fornitrogen $\left(\mathrm{M}_{2}=14\right)$
For hydrogen, $C_{p}-C_{V}=\frac{1}{M_{1}} \frac{d Q}{d T}=m$
For nitrogen, $C_{p}-C_{V}=\frac{1}{M_{2}} \frac{d Q}{d T}=n$
$\therefore \frac{\mathrm{m}}{\mathrm{n}}=\frac{\left(\frac{1}{\mathrm{M}_{1}} \frac{\mathrm{dQ}}{\mathrm{dT}}\right)}{\frac{1}{\mathrm{M}_{2}} \frac{\mathrm{dQ}}{\mathrm{dT}}}=\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}=\frac{14}{2}=7$
$\therefore \mathrm{m}=7 \mathrm{n}$

JEE-MAINS-2021 Anticipated Questions-March

9. $\frac{2.5}{\pi} \mu \mathrm{~F}$ capacitor and 3000 -ohm resistance are joined in series to an ac source of 200 volt and $50 \mathrm{sec}^{-1}$ frequency. The power factor of the circuit and the power dissipated in it will respectively
(A) $0.6,0.06 \mathrm{~W}$
(B) $0.06,0.6 \mathrm{~W}$
(C) $0.6,4.8 \mathrm{~W}$
(D) $4.8,0.6 \mathrm{~W}$

Answer: (C)

JEE-MAINS-2021 Anticipated Questions-March

Explanation :

$Z=\sqrt{R^{2}+\left(\frac{1}{2 \pi v \mathrm{C}}\right)^{2}}=\sqrt{(3000)^{2}+\frac{1}{\left(2 \pi \times 50 \times \frac{2.5}{\pi} \times 10^{-3}\right)^{2}}}$
$\Rightarrow \mathrm{Z}=\sqrt{(3000)^{2}+(4000)^{2}}=5 \times 10^{3} \Omega$
So power factor $\cos \phi=\frac{R}{Z}=\frac{3000}{5 \times 10^{3}}=0.6$ and
Power $V_{\text {rms }} \mathrm{i}_{\text {rms }} \cos \phi=\frac{\mathrm{V}_{\text {rms }}^{2} \cos \phi}{\mathrm{Z}}$
$\Rightarrow \mathrm{P}=\frac{(200)^{2} \times 0.6}{5 \times 10^{3}}=4.8 \mathrm{~W}$

JEE-MAINS-2021 Anticipated Questions -March

10. The self inductance of a choke coils is 10 mH . When it is connected with a 10 V dc source, then the loss of power is 20 watt. When it is connected with ac source loss of power is 10 watt. The frequency of ac source will be
(A) 50 Hz
(B) 60 Hz
(C) 80 Hz
(D) 100 Hz

Answer: (C)

JEE-MAINS-2021 Anticipated Questions-March

Explanation :

With $\mathrm{d} c: P=\frac{\mathrm{v}^{2}}{\mathrm{R}} \Rightarrow \mathrm{R}=\frac{(10)^{2}}{20}=5 \Omega$
With a c: $\mathrm{P}=\frac{\left(\mathrm{V}_{\mathrm{rms}}{ }^{2} \mathrm{R}\right)}{\mathrm{Z}^{2}} \Rightarrow \mathrm{Z}^{2}=\frac{(10)^{2} \times 5}{10}=50 \Omega^{2}$
Also $Z^{2}=R^{2}+4 \pi^{2} V^{2} L^{2}$
$\Rightarrow 50=(5)^{2}+4(3.14)^{2} V^{2}\left(10^{2} \times 10^{-3}\right)^{2}$
$\Rightarrow \mathrm{V}=80 \mathrm{~Hz}$

JEE-MAINS-2021 Anticipated Questions -March

11 In the relation $x=\cos (\omega t+k x)$, the dimensions of ω are
(A) $\left[\mathrm{M}^{0} \mathrm{LT}\right]$
(B) $\left[\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}\right]$
(C) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
(D) $\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$

Answer: (C)

JEE-MAINS-2021 Anticipated Questions-March

Explanation :

$\mathrm{x}=\cos (\omega \mathrm{t}+\mathrm{kx})$
Here, $(\omega t+k x)$ is an angle
So the dimension of $(\omega t+k x)=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
Ordimensions of $\omega t=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
Or dimensions of $\omega=\frac{\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]}{[\mathrm{T}]}$
Or $=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$

JEE-MAINS-2021 Anticipated Questions-March

12. Two small blocks of mass m and $2 m$ are held against a massless compressed spring within a box of mass 3 m and length 4 L whose centre is at $\mathrm{x}=0$ (see fig.). All the surfaces are frictionless. After the blocks are released they are each at a distance L from the ends of the box when they lose contact with the spring. What is the shift in position of centre of mass of the box after both blocks collide with and stick to it?
(A) $\frac{L}{3}$
(B) $\frac{\mathrm{L}}{6}$

(C) $\frac{\mathrm{L}}{12}$
(D) $\frac{\mathrm{L}}{4}$

Answer: (B)

JEE-MAINS-2021 Anticipated Questions -March

Explanation:

$$
\begin{aligned}
& \Delta X_{m}=(X-L) \\
& \Delta X_{2 m}=(X+L) \\
& \Delta X_{3 m}=X \\
& \Rightarrow m(X-L)+2 m(X+L)+3 m x=0 \\
& \Rightarrow 6 m x-m L=0 \\
& \Rightarrow x=\frac{L}{6}
\end{aligned}
$$

JEE-MAINS-2021 Anticipated Questions-March

13. A parallel plate capacitor is charged to $60 \mu \mathrm{C}$. Due to a radioactive source, the plate loss charge at the rate of $1.8 \times 10^{-8} \mathrm{Cs}^{-1}$. The magnitude of displacement current is
(A) $1.8 \times 10^{-8} \mathrm{Cs}^{-1}$
(B) $3.6 \times 10^{-8} \mathrm{Cs}^{-1}$
(C) $3.6 \times 10^{-11} \mathrm{Cs}^{-1}$
(D) $1.8 \times 10^{-12} \mathrm{Cs}^{-1}$

Answer: (A)

JEE-MAINS-2021 Anticipated Questions-March

Explanation :

Displacement current is given by
$\mathrm{I}_{\mathrm{d}}=\frac{\mathrm{dq}}{\mathrm{dt}}=1.8 \times 10^{-8} \mathrm{Cs}^{-1}$

JEE-MAINS-2021 Anticipated Questions -March

14. Calculate the moment of inertia of a wheel about its axis which having rim of mass 24 M and twenty four spokes each of mass M and length I .
(A) $24 \mathrm{Ml}^{2}$
(B) $32 \mathrm{Ml}^{2}$
(C) $64 \mathrm{Ml}^{2}$
(D) $16 \mathrm{Ml}^{2}$

Answer: (B)

JEE-MAINS-2021 Anticipated Questions -March

Explanation :

$\mathrm{I}=24 \mathrm{Ml}^{2}+24\left(\frac{\mathrm{Ml}^{2}}{3}\right)$
$=24 \mathrm{Ml}^{2}+8 \mathrm{Ml}^{2}$
$=32 \mathrm{Ml}^{2}$

JEE-MAINS-2021 Anticipated Questions-March

15. Two point charges repel each other with a force of 100 N . One of the charges is increased by 10% and other is reduced by 10%. The new force of repulsion at the same distance would be
(A) 100 N
(B) 121 N
(C) 99 N
(D) None of these

Answer: (C)

JEE-MAINS-2021 Anticipated Questions -March

Explanation :

$\mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}=\left(\frac{110}{100}\right)\left(\frac{90}{100}\right)$ times
i.e., $\frac{99}{100}$ times

Therefore, net force $=\frac{90}{100} \times 100=99 \mathrm{~N}$

JEE-MAINS-2021 Anticipated Questions -March

16. Two batteries of e.m.f. 4 V and 8 V with internal resistance 1Ω and 2Ω are connected in a circuit with a resistance of 9Ω as shown in figure. The current and potential difference between the points P and Q are.
(A) $\frac{1}{3} \mathrm{~A}$ and 3 V
(B) $\frac{1}{6} \mathrm{~A}$ and 4 V

(C) $\frac{1}{9} \mathrm{~A}$ and 9 V
(D) $\frac{1}{2} \mathrm{~A}$ and 12 V

Answer: (A)

JEE-MAINS-2021 Anticipated Questions -March

Explanation:

Applying Kirchhoff's voltage law in the given loop
$-2 \mathrm{i}+8-4-1 \times \mathrm{i}-9 \mathrm{i}=0$
$\Rightarrow \mathrm{i}=\frac{1}{3} \mathrm{~A}$
Potential difference across
$P Q=\frac{1}{3} A$ and $3 V$

JEE-MAINS-2021 Anticipated Questions-March

17. An e.m.f. of 12 volt is produced in a coil when the current in it changes at the rate of $45 \mathrm{amp} / \mathrm{m}$ inute. The inductance of the coil is
(A) 0.25 henry
(B) 15 henry
(C) 9.6 henry
(D) 16.0 henry

Answer: (D)

JEE-MAINS-2021 Anticipated Questions -March

Explanation :
$\mathrm{e}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$
$\Rightarrow \mathrm{L} \times \frac{45}{60} \Rightarrow \mathrm{~L}=16 \mathrm{H}$

JEE-MAINS-2021 Anticipated Questions -March

18. If the radius of the earth were to shrink by two percent, its mass rem aining the same, the acceleration due to gravity on the earth's surface would
(A) Decrease by 2\%
(B) Increase by 2%
(C) Increase by 4\%
(D) Decrease by 4\%

Answer: (C)

JEE-MAINS-2021 Anticipated Questions -March

Explanation :

$\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{R}^{2}} ;$
If R decreases then g increases. Taking logarithm of both the sides;
$\log g=\log G+\log M-2 \log R$
Differentiating it we get; $\frac{\mathrm{dg}}{\mathrm{g}}=0+0-\frac{2 \mathrm{dR}}{\mathrm{R}}=-2\left(\frac{-2}{100}\right)=\frac{4}{100}$
\therefore \% increase in $\mathrm{g}=\frac{\mathrm{dg}}{\mathrm{g}} \times 100=\frac{4}{100} \times 100=4 \%$

JEE-MAINS-2021 Anticipated Questions -March

19. The equation of motion of a particle is $\frac{d^{2} y}{d t^{2}}+k y=0$, where k is positive constant. The time period of the motion is given by
(A) $\frac{2 \pi}{K}$
(B) $2 \pi \mathrm{~K}$
(C) $\frac{2 \pi}{\sqrt{k}}$
(D) $2 \pi \sqrt{\mathrm{k}}$

Answer: (C)

JEE-MAINS-2021 Anticipated Questions -March

Explanation :

On comparing with standard equation $\frac{d^{2} y}{{d t^{2}}^{2}}+\omega^{2} y=0$
We get $\omega^{2}=\mathrm{K} \Rightarrow \omega=\frac{2 \pi}{\mathrm{~T}}=\sqrt{\mathrm{k}}$
$\Rightarrow \mathrm{T}=\frac{2 \pi}{\sqrt{\mathrm{k}}}$

JEE-MAINS-2021 Anticipated Questions -March

20. For hydrogen atom electron in nth Bohr orbit, the ratio of radius of orbit to its deBroglie wavelength is
(A) $\frac{n}{2 \pi}$
(B) $\frac{\mathrm{n}^{2}}{2 \pi}$
(C) $\frac{1}{2 \pi n}$
(D) $\frac{1}{2 \pi n^{2}}$

Answer: (A)

JEE-MAINS-2021 Anticipated Questions-March

Explanation :

For nth Bohr orbit, $\mathrm{r}=\frac{\left(\varepsilon_{0} \mathrm{n}^{2} \mathrm{~h}^{2}\right)}{\left(\pi m \mathrm{e}^{2}\right)}$
De - Brogile wavelength $\lambda=\frac{h}{\mathrm{mv}}$
Ration of both r and λ, we have
$\frac{r}{\lambda}=\frac{\left(\varepsilon_{0} n^{2} h^{2}\right)}{\left(\pi m Z^{2}\right)} \times \frac{m v}{h}=\frac{\left(\varepsilon_{0} n^{2} h v\right)}{\left(\pi m Z e^{2}\right)}$
But $V=\frac{\mathrm{Ze}^{2}}{2 \mathrm{~h} \varepsilon_{0} \mathrm{n}}$ for nth orbit
Hence, $\frac{r}{\lambda}=\frac{n}{2 \pi}$

JEE-MAINS-2021 Anticipated Questions -March

21 A gas mixture consists of 2 moles of oxygen and 4 moles argon at temperature T. Neglecting all vibrational modes, the total internal energy of the system is($\mathrm{N}+7$)RT. The value of N is.

Answer: (4)

Explanation :

Oxygen is diatomic gas, hence its energy of two moles $=2 \times \frac{5}{2} \mathrm{RT}=5 \mathrm{RT}$
Argon is a mono atomic gas, hence its internal energy of 4 moles $=4 \times \frac{3}{2} \mathrm{RT}=6 \mathrm{RT}$
Total Internal energy $=(6+5) R T=11 R T$

JEE-MAINS-2021 Anticipated Questions-March

22. A wire of length $1=(6 \pm 0.06)$ radius $r=(0.5 \pm 0.005) \mathrm{cm}$ and mass $\mathrm{m}=(0.3 \pm$ $0.003) \mathrm{gm}$, the maximum percentage error in density is $\mathrm{x} \%$, where $\mathrm{x}=$

Answer: (4)

Explanation :

$$
\begin{aligned}
& \rho=\frac{\mathrm{m}}{\pi \mathrm{r}^{2} \mathrm{l}} \Rightarrow \frac{\Delta \rho}{\rho} \%=\frac{\Delta \mathrm{m}}{\mathrm{~m}} \%+2 \frac{\Delta \mathrm{r}}{\mathrm{r}} \%+\frac{\Delta \mathrm{l}}{1} \% \\
& \Rightarrow \frac{0.003}{0.3} \times 100+2 \times \frac{0.005}{0.5} \times 100+\frac{0.06}{0.6} \times 100 \\
& \Rightarrow 1+2+1=4 \% \\
& \Rightarrow x=4
\end{aligned}
$$

JEE-MAINS-2021 Anticipated Questions -March

23. The displacement y of a particle in a medium can be expressed as $y=10^{-6}(100 t+$ $\left.20 \mathrm{x}+\frac{\pi}{4}\right) \mathrm{m}$ where, t is in second and x in metre. The speed of the wave is $\left(\mathrm{in} \mathrm{ms}{ }^{-1}\right.$)

Answer: (5)

Explanation:

As given $y=10^{-6}\left(100 t+20 x+\frac{\pi}{4}\right)$
Comparing it with $\mathrm{y}=\mathrm{a} \sin (\omega \mathrm{t}+\mathrm{kx}+\phi)$,
We obtain $\omega=100 \mathrm{rad} \mathrm{s}^{-1}, \mathrm{k}=\mathrm{m}^{-1}$
$\therefore \quad \mathrm{V}=\frac{\omega}{\mathrm{K}}=\frac{100}{20} \mathrm{~ms}^{-1}$

JEE-MAINS-2021 Anticipated Questions -March

24. What is the maximum value of the force F such that the block shown in the arrangement, does not move

Answer: (20)

Explanation :

$F \cos 60^{\circ}=\mu\left(W+F \sin 60^{\circ}\right)$
Substituting $\mu=\frac{1}{2 \sqrt{3}} \& W=10 \sqrt{3}$
We get $F=20 \mathrm{~N}$
Hence the answer is (20).

JEE-MAINS-2021 Anticipated Questions-March

25. Imagine an atoms made up of a proton and a hypothetical particle of double the mass of the electron but having the same charge as the electron. Apply the Bohr atom model and consider all possible transitions to the first excited level. The longest wavelength photon that will be emitted has wavelength λ given $\frac{2 \mathrm{x}}{5 \mathrm{R}}$, where ' R ' is the Rydberg's constant. Find the value of ' x '.

Answer: (9)

Explanation :

$\lambda \times \frac{1}{\mathrm{~m}}$ and $\frac{1}{\lambda}=\mathrm{r}\left[\frac{1}{2^{2}}-\frac{1}{3^{3}}\right]=\frac{5 \mathrm{R}}{36}$ (or) $\lambda=\frac{36}{5 \mathrm{R}}$
For hypothetical atom $\lambda^{\prime}=\frac{\lambda}{2}=\frac{18}{5 R}=\frac{2 \times 9}{5 R} \Rightarrow x=9$

JEE-MAINS-2021 Anticipated Questions -March

26. An infinite collection of equal masses of 2 kg are kept on x - axis at positions $x=1 m$, $2 m, 4 m, 8 m \ldots .$. The gravitational potential at $x=0$ is $-n G$. Find n.

Answer: (4)

Explanation :

$\mathrm{V}=-\frac{\mathrm{Gm}}{\mathrm{r}}$
$-\mathrm{nG}=-2 \mathrm{G}\left[\frac{1}{1}+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\cdots\right]-\mathrm{nG}$
$=-2 \mathrm{G}(2)\left[\mathrm{S}_{\infty}=\frac{\mathrm{W}}{1-\mathrm{r}}=\frac{1}{1-\frac{1}{2}}=2\right]$
$\mathrm{n}=4$

JEE-MAINS-2021 Anticipated Questions -March

27. Interference fringes were produced by Young's double slit method, the wavelength of light used being $6000 \mathrm{~A}^{\circ}$. The separation between the two slits is 2 mm . The distance between the slits and screen is 10 cm . When a transparent plate of thickness 0.5 mm is placed over one of the slits, the fringe pattern is displaced by 5 mm . If μ be the refractive index of the material of the plate, then find 5μ.

Answer: (6)

Explanation :

Here, $\mathrm{d}=2 \mathrm{~mm}=2 \times 10^{-3}, \mathrm{D}=10 \mathrm{~cm}=0.10 \mathrm{~m}, \mathrm{~T}=0.5 \mathrm{~mm}=0.5 \times 10^{-3} \mathrm{~m}, \Delta \mathrm{x}=5 \mathrm{~mm}=$
$5 \times 10^{-3} \mathrm{~m}, \lambda=6 \times 10^{-7} \mathrm{~m}$
Since, $\Delta x=\frac{D}{d}(\mu-1) t \Rightarrow \mu-1=\frac{(\Delta x) d}{D t}=\frac{5 \times 10^{-3} \times 2 \times 10^{-3}}{0.10 \times 0.5 \times 10^{-3}}=0.2$
$\mu=12 \Rightarrow 5 \mu=6$

JEE-MAINS-2021 Anticipated Questions -March

28. An object is placed 12 cm to the left of a diverging lens of focal length -6 cm . A converging lens with a focal length of 12 cm is placed at a distance d to the right of the diverging lens. Find the distance d, in cm , that corresponds to a final image at infinity..

Answer: (8)

Explanation :

Applying lens formula $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$ twice we get

$\frac{1}{v_{1}}-\frac{1}{-12}=\frac{1}{-6}$
$\frac{1}{\infty}-\frac{1}{v_{1}-d}=\frac{1}{12}$
Solving equations (1) and (2) ,
we get $\mathrm{v}_{1}=-4 \mathrm{~cm}$ and $\mathrm{d}=8 \mathrm{~cm}$

JEE-MAINS-2021 Anticipated Questions-March

29. Intensity of gravitational field $\overline{\mathrm{E}}$ in space at a point depends on co-ordinates (x, y, z) of the point as $\bar{E}=\frac{-x \hat{1}-y \hat{y}}{x^{2}+y^{2}}$. If the total mass m inside an imaginary sphere of radius a with its centre at origin is n times $\frac{a}{2 G}$ [G universal gravitational constant], then n is

Answer: (2)

Explanation :

$\oint \overline{\mathrm{E}} \overline{\mathrm{ds}}=-4 \pi \mathrm{G} \quad[\mathrm{Menclose}]$
$\Longrightarrow \oint\left(\frac{-x \hat{\imath}-y \hat{\jmath}}{x^{2}+y^{2}}\right) \cdot d s \cdot \frac{x \hat{\imath}+y \hat{\jmath}+z \hat{k}}{a}=-4 \pi G[M] \Rightarrow \oint \frac{\left(x^{2}+y^{2}\right) d s}{\left(x^{2}+y^{2}\right) a}=4 \pi G[M]$
$\Rightarrow \frac{1}{\mathrm{a}} \cdot 4 \pi \mathrm{a}^{2}=4 \pi \mathrm{GM} \Rightarrow \mathrm{M}=\frac{\mathrm{a}}{\mathrm{G}}=\frac{\mathrm{na}}{2 \mathrm{G}} \Rightarrow \mathrm{n}=2$

JEE-MAINS-2021 Anticipated Questions -March

30. A wheel rotates through an angle of θ_{1} with a uniform acceleration starting from rest in the first 1 sec . The wheel rotates through an additional angle of θ_{2} in the next 1 sec . Find the ratio $\frac{\theta_{2}}{\theta_{1}}$.

Answer: (3)

JEE-MAINS-2021 Anticipated Questions -March

Explanation :

$\omega_{0}=0, \mathrm{t}_{1}=1 \mathrm{sec}$
$\theta_{1}=\omega_{0} \mathrm{t}_{1}+\frac{1}{2} \alpha \mathrm{t}_{1}^{2}$
$\theta_{1}=\frac{\alpha}{2}$
$\theta_{1}+\theta_{2}=\omega_{0} t_{2}+\frac{1}{2} \alpha \mathrm{t}_{2}^{2}$,
$\mathrm{t}_{2}=2 \mathrm{sec}$
$\theta_{1}+\theta_{2}=\frac{1}{2} \alpha(2)^{2}, \quad \theta_{1}+\theta_{2}=2 \alpha$
$\theta_{2}=\left(\frac{3}{2}\right) \alpha \quad \ldots(2)$
(from eqn (1))
From eqn $\frac{(2)}{(1)} \Rightarrow \frac{\theta_{2}}{\theta_{1}}=3$

