TOP 30 ANTICIPATED QUESTIONS-MARCH (MATHEMATICS)
 HE PERFECT GUIDE

BASED ON JEE-MAINS 2021ANALYSIS (FEB ATTEMPT)

A Product of MyLearning Plus Pvt. Ltd.

JEE-MAINS-2021 Anticipated Questions - MARCH

1 The contra positive of $(\sim p \wedge q) \rightarrow r$ is
(A) $(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}$
(B) $(\mathrm{p} \vee \mathrm{q}) \rightarrow \mathrm{r}$
(C) $\mathrm{r} \rightarrow(\mathrm{p} \vee \sim \mathrm{q})$
(D) None of these

Answer: (C)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

Contrapositive of $(\sim p \wedge q) \rightarrow r$
$\sim[\sim r \rightarrow(\sim \mathrm{p} \wedge q)]$
$\sim(\sim r) \rightarrow(\sim \mathrm{p} \wedge q)$
$\mathrm{r} \rightarrow \mathrm{p} \vee \sim \mathrm{q}$

JEE-MAINS-2021 Anticipated Questions - MARCH

2. The locus point of intersection of tangents to the parabola $y^{2}=4 a x$, the angle between them being always 45° is
(A) $\mathrm{x}^{2}-\mathrm{y}^{2}+6 a \mathrm{x}-\mathrm{a}^{2}=0$
(B) $x^{2}-y^{2}-6 a x+a^{2}=0$
(C) $\mathrm{x}^{2}-\mathrm{y}^{2}+6 a x+\mathrm{a}^{2}=0$
(D) $x^{2}-y^{2}-6 a x-a^{2}=0$

Answer: (C)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

Equation of tangent is $y=m x+\frac{a}{m}$
$m^{2} x-m y+a=0$
$\Rightarrow \mathrm{m}_{1}+\mathrm{m}_{2}=\frac{\mathrm{y}}{\mathrm{x}}, \mathrm{m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{a}}{\mathrm{x}}$
$\tan 45^{\circ}=\left|\frac{m_{1}-m_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right| \Rightarrow\left(\frac{\mathrm{y}}{\mathrm{x}}\right)^{2}-4\left(\frac{\mathrm{a}}{\mathrm{x}}\right)=\left(1+\frac{\mathrm{a}}{\mathrm{x}}\right)^{2}$
$x^{2}-y^{2}+6 a x+a^{2}=0$

JEE-MAINS-2021 Anticipated Questions - MARCH

3. If the function $f(x)=\frac{e^{x^{2}}-\cos x}{x^{2}}$ for $x \neq 0$ is continuous at $x=0$ then $f(0)=$
(A) $\frac{1}{2}$
(B) $\frac{3}{2}$
(C) 2
(D) $\frac{1}{3}$

Answer: (B)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

Applying L-Hospital rule
$f(0)=\lim _{x \rightarrow 0} \frac{e^{x^{2}} \cdot 2 x+\sin x}{2 x}=\frac{3}{2}$

JEE-MAINS-2021 Anticipated Questions - MARCH

4. The domain of the function $\mathrm{f}(\mathrm{x})=\sqrt{1-\sqrt{1-\sqrt{1-\mathrm{x}^{2}}}}$ is
(A) $\{x \mid x<1\}$
(B) $\{\mathrm{x} \mid \mathrm{x}>-1\}$
(C) $[0,1]$
(D) $[-1,1]$

Answer: (D)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

Clearly $1-x^{2} \geq 0,1-\sqrt{1-x^{2}} \geq 0,1-\sqrt{1-\sqrt{1-x^{2}}} \geq 0$.
$1-x^{2} \geq 0 \Rightarrow x^{2} \leq 1 \Rightarrow-1 \leq x \leq 1$.
For these values the other two hold.

JEE-MAINS-2021 Anticipated Questions - MARCH

5. The greatest value of $f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3}$ on $[0,1]$ is
(A) 1
(B) 2
(C) 3
(D) $\frac{1}{3}$

Answer: (B)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

We have $\mathrm{f}(\mathrm{x})=(\mathrm{x}+1)^{1 / 3}-(\mathrm{x}-1)^{1 / 3}$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{3}(\mathrm{x}+1)^{\frac{-2}{3}}-\frac{1}{3}(\mathrm{x}-1)^{\frac{-2}{3}}=\frac{(\mathrm{x}-1)^{2 / 3}-(\mathrm{x}+1)^{2 / 3}}{3\left(\mathrm{x}^{2}-1\right)^{2 / 3}}$
Clearly $\mathrm{f}^{\prime}(\mathrm{x})$ does not exist at $\mathrm{x}= \pm 1$
Now $f^{\prime}(\mathrm{x})=0$
$\Rightarrow(\mathrm{x}-1)^{2 / 3}=(\mathrm{x}+1)^{2 / 3}$
$\Rightarrow(\mathrm{x}-1)^{2}=(\mathrm{x}+1)^{2} \Rightarrow-2 \mathrm{x}=2 \mathrm{x} \Rightarrow 4 \mathrm{x}=0 \Rightarrow \mathrm{x}=0$
Clearly, $\mathrm{f}^{\prime}(\mathrm{x}) \neq 0$ for any other values of $\mathrm{x} \in[0,1]$
The value of $f(x)$ at $x=0$ is 2
Hence, the greatest value of $f(x)=2$.

JEE-MAINS-2021 Anticipated Questions - MARCH

6. The angle of intersection of the normal at the point $\left(-\frac{5}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$ of the curves $x^{2}-y^{2}=8$ and $9 x^{2}+25 y^{2}=225$ is
(A) 0
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{4}$

Answer: (B)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

$x^{2}-y^{2}=8 \Rightarrow \frac{d y}{d x}=\frac{x}{y} \Rightarrow-\frac{1}{\frac{d y}{d x}}=-\frac{y}{x}$
At the point $\left(-\frac{5}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right),-\frac{1}{\frac{\mathrm{dy}}{\mathrm{dx}}}=\frac{-\frac{3}{\sqrt{2}}}{-\frac{5}{\sqrt{2}}}=\frac{3}{5}$
Also, $9 \mathrm{x}^{2}+25 \mathrm{y}^{2}=225$
$\Rightarrow 18 \mathrm{x}+50 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=0$
$\Rightarrow \frac{d y}{d x}=-\frac{9 x}{25 y} \Rightarrow-\frac{d x}{d y}=\frac{25 y}{9 x}$
At the point $\left(-\frac{5}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right),-\frac{\mathrm{dx}}{\mathrm{dy}}=\frac{25 \times \frac{3}{\sqrt{2}}}{9\left(-\frac{5}{\sqrt{2}}\right)}=-\frac{15}{9}=-\frac{5}{3}$
Since the product of the slopes $=-1$. Therefore the normal cut orthogonally, i.e., the required angle is equal to $\frac{\pi}{2}$

JEE-MAINS-2021 Anticipated Questions - MARCH

7. P and Q are any two points on the circle $x^{2}+y^{2}=4$ such that $P Q$ is a diameter. If α and β are the length of perpendicular from P and Q on $x+y=1$ then the maximum value of $\alpha \beta$ is
(A) $\frac{1}{2}$
(B) $\frac{7}{2}$
(C) 1
(D) 2

Answer: (B)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

$\mathrm{P}(2 \cos \theta, 2 \sin \theta), \mathrm{Q}(-2 \cos \theta,-2 \sin \theta)$
$\alpha \beta=\frac{|2 \cos \theta+2 \sin \theta-1||-2 \cos \theta-2 \sin \theta-1|}{2}$
$\frac{\left|4(\cos \theta+\sin \theta)^{2}-1\right|}{2} \leq \frac{7}{2}$

JEE-MAINS-2021 Anticipated Questions - MARCH

8. The standard deviation for the scores $1,2,3,4,5,6$ and 7 is 2 . Then, the standard deviation of $12,23,34,45,56,67$ and 78 is
(A) 2
(B) 4
(C) 22
(D) 11

Answer: (C)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

Here, $\mathrm{n}=7$, sum $=315$
\therefore Mean $=\frac{315}{7}=45$
Now, standard deviation
$=\sqrt{\frac{(12-45)^{2}+(23-45)^{2}+(34-45)^{2}+(45-45)^{2}+(56-45)^{2}+(67-45)^{2}+(78-45)^{2}}{7}}$
$=\sqrt{\frac{2(1089+484+121)}{7}}=\sqrt{\frac{3388}{7}}$
$\sqrt{484}=22$

JEE-MAINS-2021 Anticipated Questions - MARCH

9. From the top of a tower, the angle of depression of a point on the ground is 60° If the distance of this point from the tower is $\frac{1}{\sqrt{3}+1} \mathrm{~m}$, then the height of the tower is
(A) $\left(\frac{4 \sqrt{3}}{2}\right) \mathrm{m}$
(B) $\frac{(\sqrt{3}+3)}{2} \mathrm{~m}$
(C) $\frac{(3-\sqrt{3})}{2} \mathrm{~m}$
(D) $\frac{\sqrt{3}}{2} \mathrm{~m}$

Answer: (C)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

Let h be the height of the tower.
$=\frac{\mathrm{h}}{\mathrm{l}} \Rightarrow \mathrm{h}=\frac{\sqrt{3}(\sqrt{3}-1)}{(3-1)}$
$=\frac{3-\sqrt{3}}{2} \mathrm{~m}$

JEE-MAINS-2021 Anticipated Questions - MARCH

10. If \vec{a}, \vec{b} and \vec{c} are non-coplanar vectors and $\vec{a} \times \vec{c}$ is perpendicular to $\vec{a} \times(\vec{b} \times \vec{c})$, then the value of $[\vec{a} \times(\vec{b} \times \vec{c})] \times \vec{c}$ is equal to
(A) $[\vec{a} \vec{b} \vec{c}] \vec{c}$
(B) $[\vec{a} \vec{b} \vec{c}] \vec{b}$
(C) $\overrightarrow{0}$
(D) $[\vec{a} \vec{b} \vec{c}] \vec{a}$

Answer: (C)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

Given that \vec{a}, \vec{b} and \vec{c} are non-coplanar
$\Rightarrow[\vec{a} \vec{b} \vec{c}] \neq 0$
Again $\vec{a} \times(\vec{b} \times \vec{c}) \cdot(\vec{a} \times \vec{c})=0$
$\Rightarrow[(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}] \cdot(\vec{a} \times \vec{c})=0$
$\Rightarrow(\vec{a} \cdot \vec{c})[\vec{a} \vec{b} \vec{c}]=0$
$\Rightarrow(\vec{a} . \vec{c})=0$
$\Rightarrow \vec{a}$ and \vec{c} are perpendicular
$\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$
$\Rightarrow[\vec{a} \times(\vec{b} \times \vec{c})] \times \vec{c}=\overrightarrow{0}$

JEE-MAINS-2021 Anticipated Questions - MARCH

11. If α, β be the roots of the equation $x^{2}+a x-\frac{1}{2 a^{2}}=0$, 'a' being a real parameter, then the least value of $\left[\alpha^{4}+\beta^{4}\right]$ (where [.] represents greatest integer function)
(A) 1
(B) 2
(C) 3
(D) 4

Answer: (C)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :
$\alpha+\beta=-\alpha ; \alpha \beta=-\frac{1}{2 \mathrm{a}^{2}}$
$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=a^{2}+\frac{1}{a^{2}}$
$\alpha^{4}+\beta^{4}=\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}=a^{4}+\frac{1}{2 a^{4}}+2$
$\mathrm{a}^{4}+\frac{1}{2 \mathrm{a}^{4}} \geq \sqrt{2}$
$\Rightarrow \alpha^{4}+\beta^{4} \geq 2+\sqrt{2}$

JEE-MAINS-2021 Anticipated Questions - MARCH

12. The number of terms comm on between the two series $2+5+8+$.. up to 50 terms and the series $3+5+7+9+\ldots$ up to 60
(A) 24
(B) 26
(C) 25
(D) None of these

Answer: (D)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

Let term of first A.P. be equal to the term of the second A.P. then
$2,5,8, \ldots .50$ terms series 1
$3,5,7, \ldots, 60$ term s series 2
Common series $5,11,17, \ldots ., 119$
term of series $1=$ term of series $2=119$ =last term of comm on series
$\mathrm{a}=5, \mathrm{~b}=6, \mathrm{a}_{\mathrm{n}}=119$
$\mathrm{a}_{\mathrm{n}}=5+(\mathrm{n}-1) \mathrm{d}$
$\Rightarrow 119+1=6 n$
$\Rightarrow \mathrm{n}=20$

JEE-MAINS-2021 Anticipated Questions - MARCH

13. The equation of the plane in which the lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$ lie, is
(A) $17 x-47 y-24 z+172=0$
(B) $17 x+47 y-24 z+172=0$
(C) $17 x+47 y+24 z+172=0$
(D) $17 x-47 y+24 z+172=0$

Answer: (A)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

The equation of plane, in which the line $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ lies is $a(x-5)+b(y-7)+c(z+3)=$ 0 ...(i)

Where a, b and c are the direction ratios of the plane. Since, the first line lie on the plane.
\therefore Direction ratios of normal to the plane is perpendicular to the direction ratios of line i.e., $4 \mathrm{a}+4 \mathrm{~b}-5 \mathrm{c}=0$

Since, line $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$ lies in this plane. The direction ratios is also perpendicular to this line
$\therefore 7 \mathrm{a}+\mathrm{b}+3 \mathrm{c}=0 \quad$...(iii)
From Eqs. (ii) and (iii), we get
$\frac{\mathrm{a}}{17}=\frac{\mathrm{b}}{-47}=\frac{\mathrm{c}}{24}$
\therefore The required equation of plane is $17(\mathrm{x}-5)-47(\mathrm{y}-7)+(-24)(\mathrm{z}+3)=0$
$\Rightarrow 17 x-47 y-24 z+172=0$

JEE-MAINS-2021 Anticipated Questions - MARCH

14. The general solution of the differential equation $\frac{d y}{d x}+\sin \frac{x+y}{2}=\sin \frac{x-y}{2}$ is
(A) $\log \tan \left(\frac{y}{2}\right)=c-2 \sin x$
(B) $\log \tan \left(\frac{y}{4}\right)=c-2 \sin \left(\frac{x}{2}\right)$
(C) $\log \tan \left(\frac{y}{2}+\frac{\pi}{4}\right)=c-2 \sin x$
(D) $\log \tan \left(\frac{y}{4}+\frac{\pi}{4}\right)=c-2 \sin \left(\frac{x}{2}\right)$

Answer: (B)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

We have $\frac{d y}{d x}+\sin \frac{x+y}{2}=\sin \frac{x-y}{2}$
$\frac{d y}{d x}=\sin \frac{x-y}{2}-\sin \frac{x+y}{2}$
$=-2 \cos \frac{\mathrm{x}}{2} \sin \frac{\mathrm{y}}{2}$
$\Rightarrow \log \tan \frac{\mathrm{y}}{4}=-\frac{\sin \frac{\mathrm{x}}{2}}{\frac{1}{2}}+\mathrm{c}$
$\Rightarrow \log \tan \left(\frac{y}{4}\right)=c-2 \sin \frac{x}{2}$

JEE-MAINS-2021 Anticipated Questions - MARCH

15. The value of $\left(\frac{50 \mathrm{C}_{0}}{1}+\frac{50 \mathrm{C}_{2}}{3}+\frac{50 \mathrm{C}_{4}}{5}+\cdots+\frac{50 \mathrm{C}_{50}}{51}\right)$ is
(A) $\frac{2^{50}}{51}$
(B) $\frac{2^{50}-1}{51}$
(C) $\frac{2^{50}-1}{50}$
(D) $\frac{2^{51}-1}{51}$

Answer: (A)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

$$
\begin{aligned}
& \left(\frac{50 \mathrm{C}_{0}}{1}+\frac{50 \mathrm{C}_{2}}{3}+\frac{50 \mathrm{C}_{4}}{5}+\cdots+\frac{50 \mathrm{C}_{50}}{51}\right) \\
= & \frac{1}{1}+\frac{50 \times 49}{3 \times 2!}+\frac{50 \times 49 \times 48 \times 47}{5 \times 4!}+\cdots \\
= & \frac{1}{51}\left(51+\frac{51 \times 50 \times 49}{3!}+\frac{51 \times 50 \times 49 \times 48 \times 47}{5!}+\cdots\right) \\
= & \frac{1}{51}\left(51_{\mathrm{C}_{1}}+51_{\mathrm{C}_{3}}+51_{\mathrm{C}_{5}}+\cdots\right) \\
= & \frac{1}{51} \cdot 2^{51-1} \Rightarrow \frac{2^{50}}{51}
\end{aligned}
$$

JEE-MAINS-2021 Anticipated Questions - MARCH

16. $\int_{0}^{2 \pi}(\sin x+\lfloor\sin x\rfloor) d x$ is equal to
(A) 4
(B) 0
(C) 1
(D) 8

Answer: (A)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

We have, $\int_{0}^{2 \pi}(\sin x+\lfloor\sin x\rfloor) d x$
$=\int_{0}^{\pi}(\sin x+\sin x) d x+\int_{0}^{2 \pi}(\sin x-\sin x) d x$
$=\int_{0}^{\pi} 2 \sin x d x+0=2\left[-\cos _{0}^{\pi}\right]$
$=2(\cos \pi-\cos 0)=4$

JEE-MAINS-2021 Anticipated Questions - MARCH

17. The area bounded by the x-axis, the curve $y=f(x)$ and the lines $x=1, x=b$ is equal to $\sqrt{b^{2}+1}-\sqrt{2}$ for all $b>1$, then $f(x)$ is
(A) $\sqrt{x-1}$
(B) $\sqrt{x+1}$
(C) $\sqrt{x^{2}+1}$
(D) $\frac{x}{\sqrt{1+x^{2}}}$

Answer: (D)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

$\int_{1}^{b} f(x) d x=\sqrt{b^{2}+1}-\sqrt{2}$
$=\sqrt{\mathrm{b}^{2}+1}-\sqrt{1+1}=\left[\sqrt{\mathrm{x}^{2}+1}\right]_{1}^{\mathrm{b}}$
$\therefore \mathrm{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}} \sqrt{\mathrm{x}^{2}+1}=\frac{2 \mathrm{x}}{2 \sqrt{\mathrm{x}^{2}+1}}=\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+1}}$

JEE-MAINS-2021 Anticipated Questions - MARCH

18. If $f(x)=x^{2}+4 x-5$ and $A=\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]$, then $f(A)$ is equal to
(A) $\left[\begin{array}{cc}0 & -4 \\ 8 & 8\end{array}\right]$
(B) $\left[\begin{array}{ll}2 & 1 \\ 2 & 0\end{array}\right]$
(C) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
(D) $\left[\begin{array}{ll}8 & 4 \\ 8 & 0\end{array}\right]$

Answer: (D)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

$$
\begin{aligned}
& \mathrm{A}^{2}=\left[\begin{array}{cc}
1 & 2 \\
4 & -3
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
4 & -3
\end{array}\right]=\left[\begin{array}{cc}
9 & -4 \\
-8 & 17
\end{array}\right] \\
& \mathrm{f}(\mathrm{~A})=\mathrm{f}^{2}+4 \mathrm{x}-5 \\
& =\left[\begin{array}{cc}
9 & -4 \\
-8 & 17
\end{array}\right]+\left[\begin{array}{cc}
4 & 8 \\
16 & -12
\end{array}\right]-\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right] \\
& =\left[\begin{array}{ll}
8 & 4 \\
8 & 0
\end{array}\right]
\end{aligned}
$$

JEE-MAINS-2021 Anticipated Questions - MARCH

19. $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right], B=(\operatorname{adj} A)$ If A and $C=5 A$, then $\frac{|\operatorname{adj} B|}{|C|}$ is
(A) 5
(B) 25
(C) -1
(D) 1

Answer: (D)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

Since, $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right]$
$\therefore B=\operatorname{adj} A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -6 & -2 & 3 \\ -4 & -3 & 2\end{array}\right]$
$\Rightarrow \operatorname{adj} B=\left[\begin{array}{ccc}5 & -5 & 5 \\ 0 & 15 & -15 \\ 10 & 5 & 0\end{array}\right]=625$
$\Rightarrow|\operatorname{adj} B|=\left[\begin{array}{ccc}5 & -5 & 5 \\ 0 & 10 & -15 \\ 10 & 5 & 0\end{array}\right]=625$
Given that, $\mathrm{C}=5 \mathrm{~A}$
$\Rightarrow|C|=5^{3}|A|=125\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 2\end{array}\right]=625$
Hence, $\frac{|\operatorname{adj} \mathrm{B}|}{|\mathrm{C}|}=\frac{625}{625}=1$

JEE-MAINS-2021 Anticipated Questions - MARCH

20. Let a, b, c are positive real numbers. The following system of equations $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=$
$1, \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1,-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$, in x, y and z has
(A) Infinite solutions
(B) Unique solution
(C) No solution
(D) Finite number of solutions

Answer: (B)

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

Let $\frac{x^{2}}{a^{2}}=X, \frac{y^{2}}{b^{2}}=Y$ and $\frac{z^{2}}{c^{2}}=Z$, then given equation will be
$X+Y-Z=1, X-Y+Z=1,-X+Y+Z=1$
Here, $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1\end{array}\right]$
Now, $|\mathrm{A}|=-4 \neq 0$
Therefore, the given system of equation has unique solution.

JEE-MAINS-2021 Anticipated Questions - MARCH

21 If $x^{2}+x+1=0$ then the value of $\left(x+\frac{1}{x}\right)^{2}+\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\cdots+\left(x^{27}+\frac{1}{x^{27}}\right)^{2}$ is
Answer: 54

Explanation :

JEE-MAINS-2021 Anticipated Questions - MARCH

$$
\begin{aligned}
& x^{2}+x+1=0 \text { Let } x=\omega \\
& 1+\omega+\omega^{2}=0 \\
& \omega^{2}=1 \\
& \left(x+\frac{1}{x}\right)^{2}+\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\left(x^{3}+\frac{1}{x^{3}}\right)^{2}+\left(x^{4}+\frac{1}{x^{4}}\right)^{2}+\left(x^{5}+\frac{1}{x^{5}}\right)^{2}+\left(x^{6}+\frac{1}{x^{6}}\right)^{2}+\cdots+\left(x^{27}+\frac{1}{x^{27}}\right)^{2} \\
& \left(\omega+\frac{\omega^{2}}{\omega^{3}}\right)^{2}+\left(\omega^{2}+\frac{\omega}{\omega^{3}}\right)^{2}+\left(\omega^{2}+\frac{1}{\omega^{3}}\right)^{2}+\left(\omega+\frac{\omega^{2}}{\omega}\right)^{2}+\left(\omega^{2}+\frac{\omega}{\omega^{3}}\right)^{2}+\left(\left(\omega^{2}\right)^{3}+\frac{\omega}{\left(\omega^{2}\right)^{3}}\right)^{2}+\cdots+\left(\left(\omega^{3}\right)^{9}+\frac{\omega}{\left(\omega^{3}\right)^{9}}\right)^{2} \\
& =-1(-1)^{2}+(-1)^{2}+(1+1)^{2}+(-1)^{2}+(-1)^{2}+(1+1)^{2}+\cdots+(1+1)^{2} \\
& =9\left[(-1)^{2}+(-1)^{2}+(2)^{2}\right] \\
& =9(1+1+4)=54
\end{aligned}
$$

JEE-MAINS-2021 Anticipated Questions - MARCH

22. The $5^{\text {th }}$ and $8^{\text {th }}$ terms of a geometric sequence of real numbers are 7 ! and 8 ! respectively. If the sum to first terms of the G.P. is 2205 , then n equals

Answer: 3

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

Let $a, a r, a^{2}, a^{3}, \ldots$ are in G.P.
Now $\mathrm{ar}^{4}=7$! And $\mathrm{ar}^{7}=8$!
On dividing, we get $\mathrm{r}^{3}=8 \Rightarrow \mathrm{r}=2$
Hence, a. $2^{4}=5040$
$\therefore \mathrm{a}=\frac{5040}{16}=315$
So, $315,630,1260, \ldots$ are in G.P.
$\therefore \mathrm{S}_{3}=2205 \Rightarrow \mathrm{n}=3$

JEE-MAINS-2021 Anticipated Questions - MARCH

23. Suppose A and B are two events with $P(A)=0.5$ and $P(A \cup B)=0.8$. let $P(B)=p$ if A and B are mutually exclusive and $P(B)=q$ if A and B are independent events, then the value of q / p is

Answer: 2

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

When A and B are mutually exclusive, $P(A \cap B)=0$
$\therefore \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})(1)$
$\Rightarrow 0.8=0.5+\mathrm{p} \Rightarrow \mathrm{p}=0.3$ (2)
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
$=P(A)+P(B)-P(A \cap B)$
$=P(A)+P(B)-P(A) P(B)$
$\Rightarrow 0.8=0.5+q-(0.5) q$
$\Rightarrow 0.3=\frac{\mathrm{q}}{2}$
$\Rightarrow \mathrm{q}=0.6$
$\Rightarrow \frac{\mathrm{p}}{\mathrm{q}}=2$ (3)

JEE-MAINS-2021 Anticipated Questions - MARCH

24. Let $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=10 \vec{a}+2 \vec{b}$ and $\overrightarrow{O C}=\vec{b}, w$ here O, A and C are non-collinear points. Let p denote the area of quadrilateral OACB, and let q denote the area of parallelogram with $O A$ and $O C$ as adjacent sides. If $p=k q$, then find k

Answer: 6

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

Here $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=10 \vec{a}+2 \vec{b}$ and $\overrightarrow{O C}=\vec{b}$
$\mathrm{q}=$ Area of parallelogram with OA and OC as adjacent sides
$\therefore \mathrm{q}=|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|$
$p=$ Area of quadrilateral OABC

$=$ Area of $\triangle \mathrm{OAB}+$ Area of $\Delta \mathrm{OBC}$
$=\frac{1}{2}|\vec{a} \times(10 \vec{a}+2 \vec{b})|+\frac{1}{2}|(10 \vec{a}+2 \vec{b}) \times \vec{b}|$
$=|\vec{a} \times \vec{b}|+5|\vec{a} \times \vec{b}|$
$\therefore \mathrm{p}=6|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|$
Or $p=6 q \quad$..[From eq (i)]
$\therefore \mathrm{k}=6$

JEE-MAINS-2021 Anticipated Questions - MARCH

25. If $f(n+1)=\frac{1}{2}\left\{f(n)+\frac{9}{f(n)}\right\}$ where $n \in N$ and $f(x)>0 \forall n \in N$ and $\lim _{n \rightarrow \infty} f(n)$ exist then the value of $\lim _{n \rightarrow \infty} f(n)=$

Answer: 3

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

Let $\lim _{n \rightarrow \infty} f(n)=1 \Rightarrow \lim _{n \rightarrow \infty} f(n+1)=1$
$\lim _{n \rightarrow \infty} f(n+1)=\frac{1}{2} \quad \lim _{n \rightarrow \infty}\left[f(n)+\frac{9}{f(n)}\right]$
$\Rightarrow \mathrm{I}=\frac{1}{2}\left[\mathrm{I}+\frac{9}{\mathrm{I}}\right]$
$2 \mathrm{I}=\frac{\mathrm{I}^{2}+9}{\mathrm{I}} \Rightarrow 2 \mathrm{I}^{2}=\mathrm{I}^{2}+9 \Rightarrow \mathrm{I}^{2}=9$
$\mathrm{I}=3$
$\because \mathrm{f}(\mathrm{n})>0 \forall \mathrm{n} \in \mathrm{N}$
$\therefore \lim _{\mathrm{n} \rightarrow \infty} \mathrm{f}(\mathrm{n})=3$

JEE-MAINS-2021 Anticipated Questions - MARCH

26. α and β are the positive acute angles and satisfying equations $5 \sin 2 \beta=3 \sin 2 \alpha$ and $\tan \beta=3 \tan \alpha$ simultaneously. Then the value of $\tan \alpha+\tan \beta$ is

Answer: 4

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

$5 \frac{2 \tan \beta}{1+\tan ^{2} \beta}=3 \frac{2 \tan \alpha}{1+\tan ^{2} \alpha}$
$\Rightarrow \frac{5 \tan \beta}{1+\tan ^{2} \beta}=\frac{3 \tan \alpha}{1+\tan ^{2} \alpha}$
Substitute $\tan \beta=3 \tan \alpha$
We have $\frac{5 \times 3 \tan \alpha}{1+9 \tan ^{2} \alpha}=\frac{3 \tan \alpha}{1+\tan ^{2} \alpha}$
$\Rightarrow 5+5 \tan ^{2} \alpha=1+9 \tan ^{2} \alpha$
$\Rightarrow 4 \tan ^{2} \alpha=4$
$\Rightarrow \tan \alpha=1$
i.e., $\tan \beta=3$
$\therefore \tan \alpha+\tan \beta=4$

JEE-MAINS-2021 Anticipated Questions - MARCH

27. If $\int \frac{d x}{2 \sin ^{2} x+5 \cos ^{2} x}=\frac{1}{\sqrt{C}} \tan ^{-1}\left(\frac{\sqrt{A} \tan x}{\sqrt{B}}\right)+C$ then the value of $\left(\frac{A B}{C}\right)^{2}$ is \qquad
Answer: 1

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

$\int \frac{d x}{2 \sin ^{2} x+5 \cos ^{2} x}=\int \frac{\sec ^{2} x d x}{2 \tan ^{2} x+5}$
[Dividing Numerator and denominator by $\cos ^{2} x$]
Let $\tan \mathrm{x}=\mathrm{t}$
$\therefore \sec ^{2} \mathrm{xdx}=\mathrm{dt}$ (1) becomes
$\therefore \int \frac{\mathrm{dt}}{2 \mathrm{t}^{2}+5}=\frac{1}{2} \int \frac{\mathrm{dt}}{\mathrm{t}^{2}+\left(\sqrt{\frac{5}{2}}\right)^{2}}=\frac{1}{2} \frac{\sqrt{2}}{\sqrt{5}} \tan ^{-1}+\left(\sqrt{\frac{2}{5}} \mathrm{t}\right)+\mathrm{C}$
$=\frac{1}{\sqrt{10}} \tan ^{-1}\left(\frac{\sqrt{2} \tan x}{\sqrt{5}}\right)+C$
$\therefore A=\sqrt{2}, B=\sqrt{5}, C=\sqrt{10}$
$\left(\frac{A B}{C}\right)^{2}=\left(\frac{\sqrt{2} \times \sqrt{5}}{\sqrt{10}}\right)^{2}=1$

JEE-MAINS-2021 Anticipated Questions - MARCH

28.If N is the number of ways in which a person can walk up a stairway which has 7 steps if he can take lor 2 steps up the stairs at a time, then the value of $\frac{\mathrm{N}}{3}$ is

Answer: 7

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

x denotes the number of times he can take unit step and y denotes the number of times he can take 2 steps, then $x+2 y=7$
Then we must have $\mathrm{x}=1,3,5$
If $x=1$, the steps will be 1222
Number of ways $=\frac{4!}{3!}=4$
If $x=3$, the steps will 11122
Number of ways $=\frac{5!}{2!3!}=10$
If $x=5$, the steps will 111112
Number of ways $=6_{C_{1}}=6$
If $x=7$, the steps will $1111111 \Rightarrow{ }^{C_{0}}=1$
Hence total number of ways $=N=21 \Rightarrow \frac{N}{3}=7$

JEE-MAINS-2021 Anticipated Questions - MARCH

29. The number of values of k for which the lines $(k+1) x+8 y=4 k$ and $k x+(k+3) y=3 k-1$ are coincident.

Answer: 1

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

Lines $(k+1) x+8 y=4 k$ and $k x+(k+3) y=3 k-1$ are coincident then we can compare ratio of coefficients
$\Rightarrow \frac{\mathrm{k}+1}{\mathrm{k}}=\frac{8}{\mathrm{k}+3}=\frac{4 \mathrm{k}}{3 \mathrm{k}-1}$
$\Rightarrow \mathrm{k}^{2}+4 \mathrm{k}+3=8 \mathrm{k}$ and $24 \mathrm{k}-8=4 \mathrm{k}^{2}+12 \mathrm{k}$
$\Rightarrow(\mathrm{k}-3)(\mathrm{k}-1)=0$ and $(\mathrm{k}-2)(\mathrm{k}-1)=0$
$\Rightarrow \mathrm{k}=1$

JEE-MAINS-2021 Anticipated Questions - MARCH

30.If m is the minimum value of $f(x, y)=x^{2}-4 x+y^{2}+6 y$ when x and y are subjected to the restrictions $0 \leq x \leq 1$ and $0 \leq y \leq 1$, then the value of $|m|$ is

Answer: 3

JEE-MAINS-2021 Anticipated Questions - MARCH

Explanation :

We have $f(x, y)=x^{2}-4 x+y^{2}+6 y$
Let $(x, y)=(\cos \theta, \sin \theta)$, then $\theta \in[0, \pi / 2]$ and
$f(x, y)=f(\theta)=\cos ^{2} \theta+\sin ^{2} \theta-4 \cos \theta+6 \sin \theta$
$\mathrm{f}^{\prime}(\theta)=6 \cos \theta+4 \sin \theta>0 \forall \theta \in[0, \pi / 2]$
$\therefore \mathrm{f}^{\prime}(\theta)$ is strictly increasing in $[0, \pi / 2]$
$\therefore \mathrm{f}(\theta)_{\text {min }}=\mathrm{f}(0)=1-4+0=-3$

