

BASED ON JEE-MAINS 2021 ANALYSIS (FEB ATTEMPT)

A Product of MyLearning Plus Pvt. Ltd.

- 1. The contra positive of $(-p \land q) \rightarrow r$ is
- (A) $(p \land q) \rightarrow r$
- **(B)** $(p \lor q) \rightarrow r$
- (C) $r \rightarrow (p \lor \neg q)$
- (D) None of these

Answer: (C)

Explanation:

Contrapositive of $(-p \land q) \rightarrow r$ $-[-r \rightarrow (-p \land q)]$ $-(-r) \rightarrow (-p \land q)$ $r \rightarrow p \lor -q$

- 2. The locus point of intersection of tangents to the parabola $y^2 = 4ax$, the angle between them being always 45^0 is
- (A) $x^2 y^2 + 6ax a^2 = 0$ (B) $x^2 - y^2 - 6ax + a^2 = 0$ (C) $x^2 - y^2 + 6ax + a^2 = 0$ (D) $x^2 - y^2 - 6ax - a^2 = 0$

Answer: (C)

Explanation:

Equation of tangent is $y = mx + \frac{a}{m}$ $m^2x - my + a = 0$ $\Rightarrow m_1 + m_2 = \frac{y}{x}, m_1m_2 = \frac{a}{x}$ $\tan 45^0 = \left|\frac{m_1 - m_2}{1 + m_1m_2}\right| \Rightarrow \left(\frac{y}{x}\right)^2 - 4\left(\frac{a}{x}\right) = \left(1 + \frac{a}{x}\right)^2$ $x^2 - y^2 + 6ax + a^2 = 0$

3. If the function $f(x) = \frac{e^{x^2} - \cos x}{x^2}$ for $x \neq 0$ is continuous at x = 0 then f(0) =

Answer: (B)

Explanation:

Applying L-Hospital rule

$$f(0) = \lim_{x \to 0} \frac{e^{x^2} \cdot 2x + \sin x}{2x} = \frac{3}{2}$$

- 4. The domain of the function $f(x) = \sqrt{1 \sqrt{1 x^2}}$ is
- **(A)** $\{x | x < 1\}$
- **(B)** $\{x | x > -1\}$
- **(C)** [0, 1]
- **(D)** [-1,1]

Answer: (D)

Explanation:

Clearly
$$1 - x^2 \ge 0, 1 - \sqrt{1 - x^2} \ge 0, 1 - \sqrt{1 - \sqrt{1 - x^2}} \ge 0$$

 $1 - x^2 \ge 0 \Rightarrow x^2 \le 1 \Rightarrow -1 \le x \le 1.$

For these values the other two hold.

5. The greatest value of $f(x) = (x + 1)^{1/3} - (x - 1)^{1/3}$ on [0, 1] is

- **(A)** 1
- **(B)** 2
- **(C)** 3
- (D) $\frac{1}{3}$

Answer: (B)

Explanation:

We have $f(x) = (x + 1)^{1/3} - (x - 1)^{1/3}$ $\therefore f'(x) = \frac{1}{3}(x + 1)^{\frac{-2}{3}} - \frac{1}{3}(x - 1)^{\frac{-2}{3}} = \frac{(x - 1)^{2/3} - (x + 1)^{2/3}}{3(x^2 - 1)^{2/3}}$ Clearly f'(x) does not exist at $x = \pm 1$ Now f'(x) = 0 $\Rightarrow (x - 1)^{2/3} = (x + 1)^{2/3}$ $\Rightarrow (x - 1)^2 = (x + 1)^2 \Rightarrow -2x = 2x \Rightarrow 4x = 0 \Rightarrow x = 0$ Clearly, f'(x) $\neq 0$ for any other values of $x \in [0, 1]$ The value of f(x) at x = 0 is 2 Hence, the greatest value of f(x) = 2.

6. The angle of intersection of the normal at the point $\left(-\frac{5}{\sqrt{2}},\frac{3}{\sqrt{2}}\right)$ of the curves $x^2 - y^2 = 8$ and $9x^2 + 25y^2 = 225$ is

(B) $\frac{\pi}{2}$

(C) $\frac{\pi}{3}$

(D) $\frac{\pi}{4}$

Answer: (B)

Explanation:

- $x^{2} y^{2} = 8 \Rightarrow \frac{dy}{dx} = \frac{x}{y} \Rightarrow -\frac{1}{\frac{dy}{dx}} = -\frac{y}{x}$ At the point $\left(-\frac{5}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right), -\frac{1}{\frac{dy}{dx}} = -\frac{\frac{3}{\sqrt{2}}}{-\frac{5}{\sqrt{2}}} = \frac{3}{5}$ Also, $9x^{2} + 25y^{2} = 225$
- $\Rightarrow 18x + 50y \frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{9x}{25y} \Rightarrow -\frac{dx}{dy} = \frac{25y}{9x}$ At the point $\left(-\frac{5}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right), -\frac{dx}{dy} = \frac{25 \times \frac{3}{\sqrt{2}}}{9\left(-\frac{5}{\sqrt{2}}\right)} = -\frac{15}{9} = -\frac{5}{3}$

Since the product of the slopes = -1. Therefore the normal cut orthogonally, i.e., the required angle is equal to $\frac{\pi}{2}$

- 7. P and Q are any two points on the circle $x^2 + y^2 = 4$ such that PQ is a diameter. If α and β are the lengths of perpendicular from P and Q on x + y = 1 then the maximum value of $\alpha\beta$ is
- (A) $\frac{1}{2}$
- **(B)** $\frac{7}{2}$
- **(C)** 1
- **(D)** 2

Answer: (B)

Explanation:

 $P(2\cos\theta, 2\sin\theta), Q(-2\cos\theta, -2\sin\theta)$ $\alpha\beta = \frac{|2\cos\theta+2\sin\theta-1| |-2\cos\theta-2\sin\theta-1|}{2}$ $\frac{|4(\cos\theta+\sin\theta)^2-1|}{2} \le \frac{7}{2}$

- 8. The standard deviation for the scores 1, 2, 3, 4, 5, 6 and 7 is 2. Then, the standard deviation of 12, 23, 34, 45, 56, 67 and 78 is
- **(A)** 2
- **(B)** 4
- **(C)** 22
- **(D)** 11

Answer: (C)

Explanation:

Here, n = 7, sum = 315

: Mean = $\frac{315}{7}$ = 45

Now, standard deviation

$$= \sqrt{\frac{(12-45)^2 + (23-45)^2 + (34-45)^2 + (45-45)^2 + (56-45)^2 + (67-45)^2 + (78-45)^2}{7}}$$
$$= \sqrt{\frac{2(1089+484+121)}{7}} = \sqrt{\frac{3388}{7}}$$
$$\sqrt{484} = 22$$

- 9. From the top of a tower, the angle of depression of a point on the ground is 60⁰ If the distance of this point from the tower is $\frac{1}{\sqrt{3}+1}$ m, then the height of the tower is
- (A) $\left(\frac{4\sqrt{3}}{2}\right)$ m (B) $\frac{(\sqrt{3}+3)}{2}$ m (C) $\frac{(3-\sqrt{3})}{2}$ m
- **(D)** $\frac{\sqrt{3}}{2}$ m
- Answer: (C)

Explanation:

Let h be the height of the tower.

$$=\frac{h}{l}$$
 \Rightarrow $h = \frac{\sqrt{3}(\sqrt{3}-1)}{(3-1)}$

 $=\frac{3-\sqrt{3}}{2}$ m

10. If \vec{a} , \vec{b} and \vec{c} are non-coplanar vectors and $\vec{a} \times \vec{c}$ is perpendicular to $\vec{a} \times (\vec{b} \times \vec{c})$, then the value of $[\vec{a} \times (\vec{b} \times \vec{c})] \times \vec{c}$ is equal to

(A) [ā b c]c
(B) [ā b c]b

(C) $\vec{0}$

(D) [đ d c]đ

Answer: (C)

Explanation :

Given that \vec{a} , \vec{b} and \vec{c} are non-coplanar $\Rightarrow [\vec{a} \vec{b} \vec{c}] \neq 0$ Again $\vec{a} \times (\vec{b} \times \vec{c})$. $(\vec{a} \times \vec{c}) = 0$ $\Rightarrow \left[(\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c} \right] \cdot (\vec{a}\times\vec{c}) = 0$ \Rightarrow (\vec{a} . \vec{c}) [\vec{a} \vec{b} \vec{c}] = 0 \Rightarrow (\vec{a} . \vec{c}) = 0 \Rightarrow \vec{a} and \vec{c} are perpendicular $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c}$ $\Rightarrow \left[\vec{a} \times \left(\vec{b} \times \vec{c} \right) \right] \times \vec{c} = \vec{0}$

11. If α , β be the roots of the equation $x^2 + ax - \frac{1}{2a^2} = 0$, 'a' being a real parameter, then the least value of $[\alpha^4 + \beta^4]$ (where [.] represents greatest integer function)

- **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 4

Answer: (C)

Explanation:

$$\alpha + \beta = -\alpha; \ \alpha\beta = -\frac{1}{2a^2}$$

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = a^2 + \frac{1}{a^2}$$

$$\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2 = a^4 + \frac{1}{2a^4} + 2$$

$$a^4 + \frac{1}{2a^4} \ge \sqrt{2}$$

$$\Rightarrow \alpha^4 + \beta^4 \ge 2 + \sqrt{2}$$

Rizee

12. The number of terms common between the two series 2 + 5 + 8 + ...up to 50 terms and the series 3 + 5 + 7 + 9 +up to 60

- **(A)** 24
- **(B)** 26
- **(C)** 25
- (D) None of these

Answer: (D)

Explanation:

Let term of first A.P. be equal to the term of the second A.P. then

2, 5, 8,50 terms series 1 3, 5, 7,, 60 terms series 2 Common series 5, 11, 17,, 119 term of series 1 = term of series 2 = 119 = last term of common series $a = 5, b = 6, a_n = 119$ $a_n = 5 + (n - 1)d$ $\Rightarrow 119 + 1 = 6n$ $\Rightarrow n = 20$

13. The equation of the plane in which the lines $\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}$ and $\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}$ lie, is

- **(A)** 17x 47y 24z + 172 = 0
- **(B)** 17x + 47y 24z + 172 = 0
- (C) 17x + 47y + 24z + 172 = 0
- **(D)** 17x 47y + 24z + 172 = 0

Answer: (A)

Explanation:

The equation of plane, in which the line $\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}$ lies is a(x-5) + b(y-7) + c(z+3) = 0 ... (i)

Where a, b and c are the direction ratios of the plane. Since, the first line lie on the plane. \therefore Direction ratios of normal to the plane is perpendicular to the direction ratios of line i.e., 4a + 4b - 5c = 0 ... (ii)

Since, line $\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}$ lies in this plane. The direction ratios is also perpendicular to this line $\therefore 7a + b + 3c = 0$... (iii)

From Eqs. (ii) and (iii), we get

$$\frac{a}{17} = \frac{b}{-47} = \frac{c}{24}$$

: The required equation of plane is 17(x-5) - 47(y-7) + (-24)(z+3) = 0

 \Rightarrow 17x - 47y - 24z + 172 = 0

14. The general solution of the differential equation $\frac{dy}{dx} + \sin \frac{x+y}{2} = \sin \frac{x-y}{2}$ is

(A) $\log \tan \left(\frac{y}{2}\right) = c - 2 \sin x$ (B) $\log \tan \left(\frac{y}{4}\right) = c - 2 \sin \left(\frac{x}{2}\right)$ (C) $\log \tan \left(\frac{y}{2} + \frac{\pi}{4}\right) = c - 2 \sin x$ (D) $\log \tan \left(\frac{y}{4} + \frac{\pi}{4}\right) = c - 2 \sin \left(\frac{x}{2}\right)$ Answer : (B)

Explanation :

We have $\frac{dy}{dx} + \sin \frac{x+y}{2} = \sin \frac{x-y}{2}$ $\frac{dy}{dx} = \sin \frac{x-y}{2} - \sin \frac{x+y}{2}$ $= -2\cos \frac{x}{2}\sin \frac{y}{2}$ $\Rightarrow \log \tan \frac{y}{4} = -\frac{\sin \frac{x}{2}}{\frac{1}{2}} + c$ $\Rightarrow \log \tan \left(\frac{y}{4}\right) = c - 2\sin \frac{x}{2}$ Rizee

15. The value of
$$\left(\frac{50_{C_0}}{1} + \frac{50_{C_2}}{3} + \frac{50_{C_4}}{5} + \dots + \frac{50_{C_{50}}}{51}\right)$$
 is

(A)
$$\frac{2^{50}}{51}$$

(B) $\frac{2^{50}-1}{51}$
(C) $\frac{2^{50}-1}{50}$

(D)
$$\frac{2^{51}-1}{51}$$

Answer: (A)

Explanation:

$$\begin{pmatrix} \frac{50_{C_0}}{1} + \frac{50_{C_2}}{3} + \frac{50_{C_4}}{5} + \dots + \frac{50_{C_{50}}}{51} \end{pmatrix}$$

$$= \frac{1}{1} + \frac{50 \times 49}{3 \times 2!} + \frac{50 \times 49 \times 48 \times 47}{5 \times 4!} + \dots$$

$$= \frac{1}{51} \left(51 + \frac{51 \times 50 \times 49}{3!} + \frac{51 \times 50 \times 49 \times 48 \times 47}{5!} + \dots \right)$$

$$= \frac{1}{51} \left(51_{C_1} + 51_{C_3} + 51_{C_5} + \dots \right)$$

$$= \frac{1}{51} \cdot 2^{51-1} \Rightarrow \frac{2^{50}}{51}$$

- 16. $\int_0^{2\pi} (\sin x + [\sin x]) dx$ is equal to
- **(A)** 4
- **(B)** 0
- **(C)** 1
- **(D)** 8

Answer: (A)

Explanation :

We have, $\int_0^{2\pi} (\sin x + \lfloor \sin x \rfloor) dx$ = $\int_0^{\pi} (\sin x + \sin x) dx + \int_0^{2\pi} (\sin x - \sin x) dx$ = $\int_0^{\pi} 2 \sin x dx + 0 = 2 [-\cos_0^{\pi}]$ = 2 (cos π - cos 0) = 4

- 17. The area bounded by the x-axis, the curve y = f(x) and the lines x = 1, x = b is equal to $\sqrt{b^2 + 1} \sqrt{2}$ for all b > 1, then f(x) is
- **(A)** $\sqrt{x-1}$
- **(B)** $\sqrt{x + 1}$
- (C) $\sqrt{x^2 + 1}$
- (D) $\frac{x}{\sqrt{1+x^2}}$

Answer: (D)

Explanation:

$$\int_{1}^{b} f(x)dx = \sqrt{b^{2} + 1} - \sqrt{2}$$
$$= \sqrt{b^{2} + 1} - \sqrt{1 + 1} = \left[\sqrt{x^{2} + 1}\right]_{1}^{b}$$
$$\therefore f(x) = \frac{d}{dx}\sqrt{x^{2} + 1} = \frac{2x}{2\sqrt{x^{2} + 1}} = \frac{x}{\sqrt{x^{2} + 1}}$$

18. If $f(x) = x^2 + 4x - 5$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$, then f(A) is equal to

(A) $\begin{bmatrix} 0 & -4 \\ 8 & 8 \end{bmatrix}$ (B) $\begin{bmatrix} 2 \\ 2 & 0 \end{bmatrix}$ (C) $\begin{bmatrix} 1 \\ 1 & 0 \end{bmatrix}$ (D) $\begin{bmatrix} 8 \\ 8 & 0 \end{bmatrix}$

Answer: (D)

Explanation:

$$A^{2} = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 9 & -4 \\ -8 & 17 \end{bmatrix}$$
$$f(A) = f^{2} + 4x - 5$$
$$= \begin{bmatrix} 9 & -4 \\ -8 & 17 \end{bmatrix} + \begin{bmatrix} 4 & 8 \\ 16 & -12 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 8 & 4 \\ 8 & 0 \end{bmatrix}$$

19. A =
$$\begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{bmatrix}$$
, B = (adj A) If A and C = 5A, then $\frac{|adj B|}{|C|}$ is

(A) 5

(B) 25

(C) -1

(D) 1

Answer: (D)

Explanation:

Since,
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{bmatrix}$$

 $\therefore B = adj A = \begin{bmatrix} 3 & 1 & 1 \\ -6 & -2 & 3 \\ -4 & -3 & 2 \end{bmatrix}$
 $\Rightarrow adj B = \begin{bmatrix} 5 & -5 & 5 \\ 0 & 15 & -15 \\ 10 & 5 & 0 \end{bmatrix} = 625$
 $\Rightarrow |adj B| = \begin{bmatrix} 5 & -5 & 5 \\ 0 & 10 & -15 \\ 10 & 5 & 0 \end{bmatrix} = 625$
Given that, $C = 5A$
 $\Rightarrow |C| = 5^3 |A| = 125 \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 2 \end{bmatrix} = 625$
Hence, $\frac{|adj B|}{|C|} = \frac{625}{625} = 1$

20. Let a, b, c are positive real numbers. The following system of equations $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} =$

1,
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, $-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, in x, y and z has

- (A) Infinite solutions
- (B) Unique solution
- (C) No solution
- (D) Finite number of solutions

Answer: (B)

Explanation:

Let $\frac{x^2}{a^2} = X$, $\frac{y^2}{b^2} = Y$ and $\frac{z^2}{c^2} = Z$, then given equation will be X + Y - Z = 1, X - Y + Z = 1, -X + Y + Z = 1Here, $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$ Now, $|A| = -4 \neq 0$

Therefore, the given system of equation has unique solution.

21. If
$$x^2 + x + 1 = 0$$
 then the value of $\left(x + \frac{1}{x}\right)^2 + \left(x^2 + \frac{1}{x^2}\right)^2 + \dots + \left(x^{27} + \frac{1}{x^{27}}\right)^2$ is

Answer: 54

Explanation:

 $x^{2} + x + 1 = 0 \text{ Let } x = \omega$ $1 + \omega + \omega^{2} = 0$ $\omega^{2} = 1$

$$\left(x + \frac{1}{x} \right)^2 + \left(x^2 + \frac{1}{x^2} \right)^2 + \left(x^3 + \frac{1}{x^3} \right)^2 + \left(x^4 + \frac{1}{x^4} \right)^2 + \left(x^5 + \frac{1}{x^5} \right)^2 + \left(x^6 + \frac{1}{x^6} \right)^2 + \dots + \left(x^{27} + \frac{1}{x^{27}} \right)^2$$

$$\left(\omega + \frac{\omega^2}{\omega^3} \right)^2 + \left(\omega^2 + \frac{\omega}{\omega^3} \right)^2 + \left(\omega^2 + \frac{1}{\omega^3} \right)^2 + \left(\omega + \frac{\omega^2}{\omega} \right)^2 + \left(\omega^2 + \frac{\omega}{\omega^3} \right)^2 + \left((\omega^2)^3 + \frac{\omega}{(\omega^2)^3} \right)^2 + \dots + \left((\omega^3)^9 + \frac{\omega}{(\omega^3)^9} \right)^2$$

$$= -1(-1)^2 + (-1)^2 + (1+1)^2 + (-1)^2 + (-1)^2 + (1+1)^2 + \dots + (1+1)^2$$

$$= 9[(-1)^2 + (-1)^2 + (2)^2]$$

$$= 9(1+1+4) = 54$$

22. The 5th and 8th terms of a geometric sequence of real numbers are 7! and 8! respectively. If the sum to first terms of the G.P. is 2205, then n equals

Answer: 3

Explanation :

Let a, ar, ar^2 , ar^3 , ... are in G.P. Now $ar^4 = 7!$ And $ar^7 = 8!$ On dividing, we get $r^3 = 8 \Rightarrow r = 2$ Hence, $a. 2^4 = 5040$ $\therefore a = \frac{5040}{16} = 315$ So, 315, 630, 1260, ... are in G.P. $\therefore S_3 = 2205 \Rightarrow n = 3$

23. Suppose A and Bare two events with P(A)=0.5 and P(AUB)=0.8. let P(B)=p if A and B are mutually exclusive and P(B)=q if A and B are independent events, then the value of q/p is

Answer: 2

Explanation:

When A and B are mutually exclusive, $P(A \cap B) = 0$ $\therefore P(A \cup B) = P(A) + P(B) (1)$ $\Rightarrow 0.8 = 0.5 + p \Rightarrow p = 0.3$ (2) $P(A \cup B) = P(A) + P(B)$ $= P(A) + P(B) - P(A \cap B)$ = P(A) + P(B) - P(A)P(B) $\Rightarrow 0.8 = 0.5 + q - (0.5)q$ $\Rightarrow 0.3 = \frac{q}{2}$ $\Rightarrow q = 0.6$ $\Rightarrow \frac{p}{a} = 2$ (3)

24.Let $\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = 10 \vec{a} + 2\vec{b}$ and $\overrightarrow{OC} = \vec{b},$ where O,A and C are non-collinear points. Let p denote the area of quadrilateral OACB, and let q denote the area of parallelogram with OA and OC as adjacent sides. If p=k q, then find k

Answer: 6

Explanation:

Here $\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = 10 \vec{a} + 2\vec{b}$ and $\overrightarrow{OC} = \vec{b}$ q = Area of parallelogram with OA and OC as adjacent sides $\therefore \mathbf{q} = |\vec{a} \times \vec{b}| \dots (\mathbf{i})$ p = Area of quadrilateral OABC = Area of $\triangle OAB$ + Area of $\triangle OBC$ $= \frac{1}{2} \left| \vec{a} \times (10 \vec{a} + 2\vec{b}) \right| + \frac{1}{2} \left| (10 \vec{a} + 2\vec{b}) \times \vec{b} \right|$ $= |\vec{a} \times \vec{b}| + 5 |\vec{a} \times \vec{b}|$ $\therefore p = 6 |\vec{a} \times \vec{b}|$ $Or p = 6q \dots [From eq (i)]$ $\therefore k = 6$

> © Copyright 2020 by Rizee A Product of MyLearning Plus Pvt. Ltd.

 $10\vec{a} + 2\vec{b}$

a

25. If $f(n + 1) = \frac{1}{2} \{ f(n) + \frac{9}{f(n)} \}$ where $n \in \mathbb{N}$ and $f(x) > 0 \forall n \in \mathbb{N}$ and $\lim_{n \to \infty} f(n)$ exist then the value of $\lim_{n \to \infty} f(n) =$

Answer: 3

Explanation:

Let $\lim_{n \to \infty} f(n) = 1 \Rightarrow \lim_{n \to \infty} f(n + 1) = 1$ $\lim_{n \to \infty} f(n + 1) = \frac{1}{2} \lim_{n \to \infty} \left[f(n) + \frac{9}{f(n)} \right]$ $\Rightarrow I = \frac{1}{2} \left[I + \frac{9}{I} \right]$ $2I = \frac{I^2 + 9}{I} \Rightarrow 2I^2 = I^2 + 9 \Rightarrow I^2 = 9$ I = 3 $\therefore f(n) > 0 \forall n \in \mathbb{N}$ $\therefore \lim_{n \to \infty} f(n) = 3$

 $\therefore \lim_{n \to \infty} f(n) = 3$

26. α and β are the positive acute angles and satisfying equations 5 sin $2\beta = 3 \sin 2\alpha$ and $\tan \beta = 3 \tan \alpha$ simultaneously. Then the value of $\tan \alpha + \tan \beta$ is _____

Answer: 4

Explanation:

 $5 \frac{2 \tan \beta}{1 + \tan^2 \beta} = 3 \frac{2 \tan \alpha}{1 + \tan^2 \alpha}$ $\Rightarrow \frac{5 \tan \beta}{1 + \tan^2 \beta} = \frac{3 \tan \alpha}{1 + \tan^2 \alpha}$ Substitute $\tan \beta = 3 \tan \alpha$ $We have \frac{5 \times 3 \tan \alpha}{1 + 9 \tan^2 \alpha} = \frac{3 \tan \alpha}{1 + \tan^2 \alpha}$ $\Rightarrow 5 + 5 \tan^2 \alpha = 1 + 9 \tan^2 \alpha$ $\Rightarrow 4 \tan^2 \alpha = 4$ $\Rightarrow \tan \alpha = 1$ i.e., $\tan \beta = 3$ $\therefore \tan \alpha + \tan \beta = 4$

27. If
$$\int \frac{dx}{2\sin^2 x + 5\cos^2 x} = \frac{1}{\sqrt{C}} \tan^{-1} \left(\frac{\sqrt{A}\tan x}{\sqrt{B}}\right) + C$$
 then the value of $\left(\frac{AB}{C}\right)^2$ is _____

Answer:1

© Copyright 2020 by Rizee A Product of MyLearning Plus Pvt. Ltd.

ρ

Explanation:

$$\int \frac{dx}{2\sin^2 x + 5\cos^2 x} = \int \frac{\sec^2 x \, dx}{2\tan^2 x + 5} \quad \dots (1)$$

[Dividing Numerator and denominator by $\cos^2 x$]

Let $\tan x = t$

 \therefore sec² x dx = dt (1) becomes

$$\therefore \int \frac{dt}{2t^2 + 5} = \frac{1}{2} \int \frac{dt}{t^2 + \left(\sqrt{\frac{5}{2}}\right)^2} = \frac{1}{2} \frac{\sqrt{2}}{\sqrt{5}} \tan^{-1} + \left(\sqrt{\frac{2}{5}} t\right) + C$$
$$= \frac{1}{\sqrt{10}} \tan^{-1} \left(\frac{\sqrt{2} \tan x}{\sqrt{5}}\right) + C$$
$$\therefore A = \sqrt{2}, B = \sqrt{5}, C = \sqrt{10}$$
$$\left(\frac{AB}{C}\right)^2 = \left(\frac{\sqrt{2} \times \sqrt{5}}{\sqrt{10}}\right)^2 = 1$$

28. If N is the number of ways in which a person can walk up a stairway which has 7 steps if he can take 1 or 2 steps up the stairs at a time, then the value of $\frac{N}{3}$ is

Answer: 7

Explanation:

x denotes the number of times he can take unit step and y denotes the number of times he can take 2 steps, then x + 2y = 7Then we must have x = 1, 3, 5If x = 1, the steps will be 1222 Number of ways = $\frac{4!}{2!}$ = 4 If x = 3, the steps will 11122 Number of ways = $\frac{5!}{2|3|}$ = 10 If x = 5, the steps will 111112 Number of ways = $6_{C_1} = 6$ If x = 7, the steps will 1111111 \Rightarrow 7_{C0} = 1 Hence total number of ways = N = 21 $\Rightarrow \frac{N}{3} = 7$

29. The number of values of k for which the lines (k + 1)x + 8y = 4k and kx + (k + 3)y = 3k - 1 are coincident.

Answer:1

Explanation:

Lines (k + 1)x + 8y = 4k and kx + (k + 3)y = 3k - 1 are coincident then we can compare ratio of coefficients

$$\Rightarrow \frac{k+1}{k} = \frac{8}{k+3} = \frac{4k}{3k-1}$$

$$\Rightarrow k^{2} + 4k + 3 = 8k \text{ and } 24k - 8 = 4k^{2} + 12k$$

$$\Rightarrow (k-3)(k-1) = 0 \text{ and } (k-2)(k-1) = 0$$

$$\Rightarrow k = 1$$

30. If m is the minimum value of $f(x, y) = x^2 - 4x + y^2 + 6y$ when x and y are subjected to the restrictions $0 \le x \le 1$ and $0 \le y \le 1$, then the value of |m| is

Answer: 3

Explanation:

We have $f(x, y) = x^2 - 4x + y^2 + 6y$ Let $(x, y) = (\cos \theta, \sin \theta)$, then $\theta \in [0, \pi/2]$ and $f(x, y) = f(\theta) = \cos^2 \theta + \sin^2 \theta - 4\cos \theta + 6\sin \theta$ $f'(\theta) = 6\cos \theta + 4\sin \theta > 0 \quad \forall \theta \in [0, \pi/2]$ $\therefore f'(\theta)$ is strictly increasing in $[0, \pi/2]$ $\therefore f(\theta)_{\min} = f(0) = 1 - 4 + 0 = -3$

