25-07-2021 SHIFT-2 PHYSICS MEMORY BASED

- 1. Value of force $F = A\sin(Bt) + C\cos(Dx)$ find dimension of $\frac{AB}{D}$
 - 1) ML^3T^{-1}
- 2) ML^2T^{-3}
- 3) $ML^{1}T^{-3}$
- 4) ML^2T^3

Key: 2

Sol: Dimension of A =MLT⁻², B=T⁻¹, D=L⁻¹

$$Dim = \frac{AB}{D} = \frac{MLT^{-2}T^{-1}}{L^{-1}} = ML^2T^{-3}$$

- 2. Force is given by $F = (5y + 20)\hat{j}$ find work done for moving particle from y = 0 to y = 5:
 - 1) 162.5 J
- 2) 165 J
- 3) 132.5 J
- 4) 140.5 J

Key:- 1

Sol:- $w = \int f dy$

$$w = \int_{0}^{5} (5y + 20) dy$$

$$= \left[\frac{5y^2}{2} + 20y \right]_0^5 \Rightarrow \frac{5 \times 25}{2} + 100 = 162.5J$$

- 3. A hot air balloon is ascending with constant velocity of 10 m/s. When balloon reaches a height of 75 m, a stone is dropped from balloon. What will be the height of balloon, when stone reaches earth?
 - 1) 125 m
- 2) 135 m
- 3) 140 m
- 4) 145 m

Key:- 1

Sol:-

For stone

$$75-10t+\frac{1}{2}gt^2$$

$$75 = -10t + 5t^2$$

$$t^2 - 2t - 15 = 0$$

$$t = 5 \sec$$
.

Heightof balloon

$$H = vt + 75$$

$$H = 10 \times 5 + 75 = 125m$$

Relation between position and time of a particle moving along straight line is giving by $t = x + 3x^2$. Find 4. acceleration of particle at t = 10s

1)
$$\frac{-5}{1331}$$

2)
$$\frac{6}{1331}$$

2)
$$\frac{6}{1331}$$
 3) $\frac{-6}{1331}$

4)
$$\frac{5}{1331}$$

Key:- 3

Sol:-
$$t = X + 3x^2$$
....(1)

$$t = \frac{dx}{dt} + 6x \frac{dx}{dt} \Rightarrow v = \frac{1}{(1+6x)}$$

$$0 = \frac{d^2x}{dt^2} + 6\left(x\frac{d^2x}{dt^2} + \left(\frac{dx}{dt}\right)^2\right)$$

$$0 = a + 6 + a + 6v^2$$

$$a = \frac{-6v^2}{\left(1+6x\right)}\dots\left(2\right)$$

$$a = -\frac{6}{\left(1 + 6x\right)^3}$$

From equation $\dots (1)$

$$10 = x + 3x^2$$

$$3x^2 + x - 10 = 0$$

$$3x^2 + 6x - 5x - 10 = 0$$

$$3x(x+2)-5(x+2)$$

$$(3x-5)(x+2) \Rightarrow x = \frac{5}{3}$$

from equation (2)

$$a = \frac{-6}{\left(1 + 6 \times \frac{5}{3}\right)^3} = \frac{-6}{1331}$$

where the ratio of charges is $\frac{Q_1}{Q_2} = \frac{1}{2}$ and ratio of velocities is $\frac{V_1}{V_2} = \frac{3}{2}$ then find the ratio of the radius

- 1)2:1
- 2) 3:1
- 3)4:1
- 4) 1:1

Key:- 2

Sol:- Given
$$\frac{Q_1}{Q_2} = \frac{1}{2} \& \frac{V_1}{V_2} = \frac{3}{2}$$

$$R = \frac{mv}{qB}$$

$$\frac{R_1}{R_2} = \frac{V_1}{V_2} \times \frac{Q_2}{Q} = \frac{3}{2} \times \frac{2}{1} = \frac{3}{1}$$

- 6. A particle performing SHM with amplitude A. Find the ratio of kinetic energy and total energy when particle is at A/2
 - 1) $\frac{3}{4}$

2) $\frac{2}{3}$

3) $\frac{4}{3}$

4) $\frac{1}{2}$

Key:- 1

Sol:-
$$V_{A/2} = \omega \sqrt{A^2 - X^2}$$

$$=\omega \sqrt{A^2 - \left(\frac{A}{2}\right)^2} = \omega \left(\frac{\sqrt{3}}{2}A\right)$$

$$=\frac{\sqrt{3}}{2}V_{\text{max}}$$

$$KE = \frac{1}{2} m \left(\frac{\sqrt{3}}{2} V_{\text{max}} \right)^2$$

$$TE = \frac{1}{2}m\left(V_{\text{max}}\right)^2$$

$$\frac{KE}{TE} = \frac{3}{4}$$

- 7. In photoelectric effect shopping potential is $3V_0$ for incident wave length λ_0 and stopping potential V_0 for incident wavelength $2\lambda_0$. Find threshold wavelength.
 - 1) $3\lambda_0$
- 2) $2\lambda_0$
- 3) $4\lambda_0$
- 4) $8\lambda_0$

$$eV = \frac{hc}{\lambda} - W$$

for first case

$$e(3V_0) = \frac{hc}{\lambda_0} - W \dots (i)$$

for second case

$$\mathbf{e}\mathbf{v}_0 = \frac{\mathbf{h}\mathbf{c}}{2\lambda_0} - \mathbf{W}.....(ii)$$

From equation (i) and (ii)

for
$$\lambda_{th}$$

$$W = \frac{hc}{4\lambda_0} W = \frac{hc}{\lambda_{th}}$$

$$\Rightarrow \frac{hc}{4\lambda_0} = \frac{hc}{\lambda_{th}} \Rightarrow \lambda_{th} = 4\lambda_0$$

- 8. Efficiency of heat engine is $\eta = 1/6$. If temperature of sink is decreased by 62K, then efficiency becomes 1/3. Find temperature of source:
 - 1) 372 K
- 2) 272 **K**
- 3) 350 K
- 4) 450 K

Key:- 1

Sol:-
$$\eta = \left(1 - \frac{T_2}{T_1}\right)$$

$$\frac{T_2}{T_1} = 1 - \eta = 1 - \frac{1}{6} \dots (1)$$

$$\frac{T_2 - 62}{T_1} = 1 - \frac{1}{3} \dots (2)$$

Equaiton $\frac{(1)}{(2)}$

$$\Rightarrow \frac{T_2}{T_2 - 62} = \frac{5}{6} \times \frac{3}{2} = \frac{5}{4}$$

$$\Rightarrow T_2 = 5 \times 62$$

From eq.(1)

$$T_1 = \frac{T_2}{1 - \eta} = \frac{5 \times 62}{1 - \frac{1}{6}} = 5 \times 62 \times \frac{6}{5} = 372K$$

- 9. Activity of an element x becomes 1/8 of initial in 30 years. Find half-life:
 - 1) 10 Year.
- 2) 12 Year
- 3) 15 Year
- 4) 17 Year

Key:- 1

Sol:-
$$A = A_0 e^{-\lambda t}$$

For half life

$$A/2 = Ae^{-\lambda t_{1/2}}$$

$$\frac{1}{2}e^{\lambda t_{1/2}}$$
....(1)

Given $1/8 = e^{-\lambda 30}$

Solving (1) and (2)

$$e^{-3\lambda t_{1/2}} = e^{-\lambda 30}$$

$$T_{1/2} = 10 \text{Yrs}.$$

- 10. If De-Broglie wavelengths of photon and electron are equal, what will be the ratio of kinetic energy of electron and energy photon? Given that velocity of electron is v and velocity of light is c:
 - 1) $\frac{2v}{c}$
- $2) \frac{v}{2c}$
- 3) $\frac{3v}{c}$
- $4) \frac{c}{3v}$

Key:- 2

Sol:- De broglie wavelength is given by $\lambda = \frac{h}{\rho}$

$$KE_{\rho n} = MC^2 = pc.....(1)$$

$$KE_e = \frac{1}{2}mv^2 = \frac{pv}{2}....(2)$$

$$\frac{KE_e}{KE_{pn}} = \frac{pv/2}{pc} = \frac{v}{2c}$$

- 11. A square loop of total resistance 16Ω . If a batter of 2 V and 1Ω internal resistance is connected across one of its side then find potential difference across its diagonal:
 - 1) 1V
- 2) 2V
- 3) 3V
- 4) 4V

Sol:-

$$V_{AB} = ??$$

$$R_{eq} = \frac{12 \times 4}{12 + 4} = 3$$

$$i = \frac{3}{3+1} = \frac{1}{2}A$$

$$i_{2} = \frac{r_{2}}{r_{2} + r_{1}} i = \frac{1}{3+1} \times \frac{1}{2} = \frac{1}{8}$$

$$V = \frac{1}{3+1} \times \frac{1}{2} = \frac{1}{8}$$

$$V_{AB} = \frac{1}{8} \times 8 = 1V$$

12.
$$\vec{A}$$
 and \vec{B} are two vectors such that $|\vec{A}| = 2$ and $|\vec{B}| = 5$. If $|\vec{A} \times \vec{B}| = 8$, then $|\vec{A} \cdot \vec{B}| = ?$

1) 2

2) 6

3) 7

Sol:-
$$|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta$$

$$\Rightarrow 10 \sin \theta = 8$$

$$\sin\theta = \frac{4}{5}$$

Now
$$|\vec{A} \cdot \vec{B}| = |\vec{A}| |\vec{B}| \cos \theta = 10 \times \frac{3}{5} = 6$$

13. Find significant figure for the value 0.00346.

1) 5

2) 4

3)3

4) 2

Key:- 3

- Sol:-There are 3 non zero digit after the decimal point so significant number is 3. 0.00346
- 14. For a prism, if angle of minimum deviation is equal to angle of prism. If refractive index of prism material is μ . Then angle of prism should be?

 - 1) $2\sin^{-1}\left(\frac{\mu}{2}\right)$ 2) $2\cos^{-1}\left(\frac{\mu}{2}\right)$ 3) $3\cos^{-1}\left(\frac{\mu}{2}\right)$ 4) $3\sin^{-1}\left(\frac{\mu}{2}\right)$

Key:- 2

Sol:-
$$\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$

$$\mu = \frac{\sin A}{\sin A/2}$$

$$\mu = 2\cos\frac{A}{2}$$

$$A = 2\cos^1\left(\frac{\mu}{2}\right)$$

- A photon of wavelength 500 nm falls on a metal surface of work function 1.3 eV. An electron releases 15. from metal moved in a perpendicular magnetic filed. In a circular path of radius 30 cm. Then the magnitude of magnetic field will be?
 - 1) $12.2 \mu T$
- 2) $10.2\mu T$ 3) $8.2\mu T$ 4) $6.2\mu T$

Sol:-
$$\frac{hc}{\lambda} = \phi + KE_{\text{max}}$$

$$\frac{1240}{500} = 1.3 + KE_{\text{max}}$$

$$KE_{\text{max}} = 1.18eV$$

Now R =
$$\frac{mv}{qB} = \frac{\sqrt{2mKE}}{qB}$$

$$B = \frac{\sqrt{2mKE}}{qR}$$

$$B = \frac{\sqrt{2 \times 9.1 \times 10^{-31} \times 1.18 \times 1.6 \times 10^{-19}}}{1.6 \times 10^{-19} \times 30 \times 10^{-2}}$$

$$B = 0.122 \times 10^{-4}$$

$$B = 12.2 \times 10^{-6}$$

i.e.,
$$B = 12.2 \mu T$$

16. Two electric dipole $\overrightarrow{P_1}$ and $\overrightarrow{P_2}$ are kept as shown in figure. Net electric field at point S is E makes an angle 37^0 with $\overrightarrow{P_1}$ then find the ratio of $\left|\overrightarrow{P_1}\right|$ and $\left|\overrightarrow{P_2}\right|$.

Key:- 3

Sol:-

Electric field due to \overrightarrow{P}_1 at axis point S

$$E_{axis} = \frac{2KP_1}{r^3}$$

$$\Rightarrow E\cos 37^0 = \frac{2KP_1}{r^3}.....(1)$$

Electric field due to \vec{P}_2 at perpendicular bisector at point S.

$$E_{\perp} = \frac{KP_2}{r^3} \Rightarrow E \sin 37^0 = \frac{KP_2}{r_2} \dots (2)$$

$$\frac{\frac{2KP_1}{r^3}}{\frac{KP_2}{r^3}} = \frac{E\cos 37^0}{E\sin 37^0}$$

$$\Rightarrow \frac{2P_1}{P_2} = \frac{4}{3} \Rightarrow \frac{P_1}{P_2} = \frac{2}{3}$$

17. Power in both the given circuit are same then find angular frequency of AC source.

1) 200

2) 300

Key:- 4

Sol:-
$$P_1 = P_2$$

$$\left(\frac{V_2}{R}\right)_1 = \left(\frac{V^2}{Z}\right)_2 \Rightarrow R = Z$$

$$R = \sqrt{\left(\omega L - \frac{1}{\omega C}\right)^2 + R^2}$$

$$10 = \sqrt{\left(\omega L - \frac{1}{\omega C}\right)^2 + R^2}$$

$$100 = \left[\omega(0.1) - \frac{1}{\omega(40 \times 10^{-6})}\right]^2 + 100$$

$$\omega^2(0.1) = \frac{1}{40 \times 10^{-6}}$$

$$\omega^2 = \frac{1}{4} \times 10^6$$

$$\omega = 500$$

18. For the given circuit, find the potential drop across 2Ω resistance?

The wire AB is of length 10 cm, and its resistance is $1\Omega/cm$. Point D is mid-point of wire AB.

- 1) 2.44 V
- 2) 4.44 V
- 3) 3.44 V
- 4) 10.44V

Key:- 2

Sol:-

$$V_{2\Omega} = \frac{20}{\frac{10}{7} + 5} \times \frac{10}{7}$$

$$V_{2\Omega} = 4.44V$$

- Mass of a planet is double the mass of earth. Both the planet have same mass density. A body has weight 19. W on surface of earth, then weight of the same body on surface of planet?
 - 1) $2^{2/3}W$
- 2) $2^{1/3}W$
- 3) W
- 4) $3^{1/2}W$

Sol:-
$$2M_E = M_P$$

$$2\rho \times \frac{4}{3}R_E^3 = \rho \times \frac{4}{3}\pi R_P^3$$
 (same density)

$$R_p = 2^{1/3} R_E$$

$$g_P = \frac{GM_P}{R_P^2}$$
 (acceleration due to gravity)

$$g_P = \frac{G2M_E}{\left(2^{1/3}R_E\right)^2} = \frac{G2M_E}{2^{2/3}R_E^2}$$

$$g_P = 2^{1/3} ge$$

Weight on planet = $2^{1/3}$ weight on earth

$$W_P = 2^{1/3}W$$

- 20. A force $\vec{F} = 40\hat{i} + 10\hat{j}$ is applied on a stationary object of mass 5 kg. What will be the position of of object after 10s, if initially object was at origin?
 - 1) (200,100)
- 2) (400,400)
- 3) (400,100)
- 4) (100,100)

Key:- 3

Sol:-
$$\vec{a} = 8\hat{i} + 2\hat{j}$$

$$\vec{S} = \vec{u}t + \frac{1}{2}\vec{a}t^2$$

$$\vec{S} = \frac{1}{2} \left(8\hat{i} + 2\hat{j} \right) \times 100$$

$$\vec{S} = 400\hat{i} + 100\hat{j}$$

21. An AC source with V_{max} =200V and f=50Hz connected across 10Ω resistance. Find the time in which source voltage changes from maximum to rms value.

- 1) $\frac{1}{200}s$
- 2) $\frac{1}{400}s$
- 3) $\frac{1}{300}s$
- 4) $\frac{1}{500}$ s

Key:- 2

Sol:-

$$\omega = 2\pi f$$

 $=100\pi rad/s$

$$\mathbf{V} = \mathbf{V}_0 \sin\left(\omega t + \frac{\pi}{2}\right)$$

$$\cos \omega t = \frac{1}{\sqrt{2}}$$

$$\omega t = \frac{\pi}{4}$$

Thus
$$t = \frac{\pi/4}{100\pi} = \frac{1}{400}s$$

1) 7

2) 6

3)8

4) 4

Sol:-
$$\omega = \frac{600 \times 2\pi}{60} = 20\pi \text{rad/s}$$

$$\omega f = \omega i + \alpha t$$

$$\mathbf{0} = 20\pi - \alpha \left(10 \right)$$

$$\alpha = 2\pi rad / S^2$$

$$\tau = I \times \alpha$$

$$=\frac{mR^2}{2}\times 2\pi = \frac{2\times 4}{2}\times 2\pi = 8\pi$$

$$\eta = 8$$

For two vector \overrightarrow{X} and \overrightarrow{Y} , $|\overrightarrow{X}| = |\overrightarrow{Y}|$ and $|\overrightarrow{X} - \overrightarrow{Y}| = n |\overrightarrow{X} + \overrightarrow{Y}|$. Then find angle be 23.

1)
$$\cos^{-1}\frac{1-n^2}{1+n^2}$$
 2) $\cos^{-1}\frac{1+n^2}{1-n^2}$ 3) $\cos^{-1}\frac{2-n^2}{2+n^2}$

2)
$$\cos^{-1}\frac{1+n^2}{1-n^2}$$

3)
$$\cos^{-1}\frac{2-n^2}{2+n^2}$$

4)
$$\cos^{-1} \frac{2+n^2}{2-n^2}$$

Key:- 1

Sol:-

$$|\vec{X} - \vec{Y}| = n |\vec{X} + \vec{Y}|$$

$$\left| \vec{X} \right|^2 + \left| \vec{Y} \right|^2 - 2 \left| \vec{X} \right| \vec{Y} \right| \cos \theta = n^2 \left[\left| \vec{X} \right|^2 + \left| \vec{Y} \right|^2 + 2 \left| \vec{X} \right| \vec{Y} \right| \cos \theta \right]$$

As
$$|\vec{X}| = |\vec{Y}|$$

$$2|\vec{X}|^2 - 2|\vec{X}|^2\cos\theta = 2n^2|\vec{X}|^2 + 2n^2|\vec{X}|^2\cos\theta$$

$$1 - \cos\theta = n^2 + n^2 \cos\theta$$

$$\cos\theta = \frac{1 - n^2}{1 + n^2}$$

$$\theta = \cos^{-1} \frac{1 - n^2}{1 + n^2}$$

Find energy required to break an Aluminum nucleus into its constituent nucleons. 24.

$$(\mathbf{m}_{n}=1.00867 \text{ u}, \mathbf{m}_{p}=1.00783 \text{u}, \mathbf{m}_{Al}=26.98154 \text{ u})$$

- 1) 225 MeV
- 3) 235 MeV
- 4) 245 MeV

Key:- 1

Binding Energy = ΔmC^2 Sol:-

$$\Delta m [13 \times 1.00783 + 14 \times 1.00867 - 26.98154]$$

$$= [13.10179 + 14.12138 - 26.98154] = 0.24163$$

:.
$$B.E = 0.24163C^2 \times 931 MeV / C^2$$

$$= 224.95 MeV \approx 225 MeV.$$

- 25. A cell of voltage 'V₀' is connected across a capacitor of capacitance 'C'. Now the space between the plates is filled with a material of dielectric constant K. Find the ratio of charge appear on the plates of capacitor before and after filling.
 - 1) 1: K
- 2) K : 1

- 3) 2K : 1
- 4) K:2

Sol:-

$$Q_1 = CV$$

$$Q_2 = KCV$$

$$\frac{Q_1}{Q_2} = \frac{1}{K}$$

Pure S_i at room temperature has equal electron (n_e) and hole (n_h) concentration of $1.5 \times 10^{16} \, m^{-3}$. Droping 26. by indium increases n_h to $3 \times 10^{22} \, m^{-3}$. Calculate n_e in the doped S_i .

1)
$$7.5 \times 10^9 \, m^{-3}$$

1)
$$7.5 \times 10^9 m^{-3}$$
 2) $6.5 \times 10^9 m^{-3}$ 3) $7.5 \times 10^8 m^{-3}$ 4) $7.5 \times 10^7 m^{-3}$

3)
$$7.5 \times 10^8 m^{-3}$$

4)
$$7.5 \times 10^7 \, m^{-3}$$

Key:- 1

For a doped semi – conductor in thermal equilibrium Sol:-

$$nenh = n_i^2$$

$$\Rightarrow n_e = \frac{n_i^2}{nh} = \frac{\left(1.5 \times 10^{16}\right)^2}{3 \times 10^{22}} = 7.5 \times 10^9 \text{m}^{-3}$$

A particle starts from rest and moves with a variable acceleration $a = \alpha t + \beta t^2$, where α and β are 27. positive constants. Find the distance covered by particle in t=1 sec to t=2 sec?

1)
$$\frac{11}{6}\alpha + \frac{15}{12}\mu$$

2)
$$\frac{7}{6}\alpha + \frac{17}{12}\mu$$

3)
$$\frac{7}{6}\alpha + \frac{15}{12}\beta$$

1)
$$\frac{11}{6}\alpha + \frac{15}{12}\beta$$
 2) $\frac{7}{6}\alpha + \frac{17}{12}\beta$ 3) $\frac{7}{6}\alpha + \frac{15}{12}\beta$ 4) $\frac{1}{3}\alpha + \frac{15}{12}\beta$

Key:- 3

Sol:-
$$\int_{0}^{v} dv = \int_{0}^{t} a dt$$

$$v = \frac{\alpha t^2}{2} + \frac{\beta t^3}{3}$$

Now

$$\int_{0}^{s} ds = \int_{1}^{2} v dt$$

$$s = \left\lceil \frac{\alpha t^3}{6} + \frac{\beta t^4}{12} \right\rceil^2 \Rightarrow s = \frac{7}{6}\alpha + \frac{15}{12}\beta$$

- 28. A carrier frequency of 1 MHz and peak value of 10 V is amplitude modulated with a signal frequency of 10 KHz with peak value of 0.5 V. Find modulation index.
 - 1) 0.02
- 2) 0.03
- 3) 0.04
- 4) 0.05

Key:- 4

Sol:-
$$A_{\text{max}} = 10 + 0.5 = 10.5$$

$$A_{\text{max}} = 10 - 0.5 = 9.5$$

$$m_a = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}} = \frac{10.5 - 9.5}{10.5 + 9.5} = 0.05$$

29. Two soap bubbles of radius r_1 and r_2 vacuum are combined isothermally to form a new bubble. Find the radius of this new bubble?

1)
$$\sqrt{r_1^2 + r_2^2}$$

2)
$$\sqrt{r_1^2 - r_2^2}$$

3)
$$\sqrt{\frac{r_1r_2}{r_1+r_2}}$$

$$4) \sqrt{\frac{r_1 r_2}{r_1 - r_2}}$$

Key:- 1

Sol:-

Rizee

By surface energy conservation

$$\sigma A_1 + \sigma A_2 = \sigma A$$

$$\sigma \left[2 \times 4\pi r_1^2 \right] + \sigma \left[2 \times 4\pi r_2^2 \right] = \sigma \left[2 \times 4\pi r^2 \right]$$

$$r_1^2 + r_2^2 = r^2$$

$$r = \sqrt{r_1^2 + r_2^2}$$

A ray is incident on a slab of refractive index $\frac{5}{4}$ at an angle θ as shown in fig 30. θ . So that TIR occur at surface AD.

1)
$$\sin^{-1}\frac{\sqrt{5}}{3}$$
 2) $\sin^{-1}\frac{\sqrt{3}}{2}$ 3) $\sin^{-1}\frac{3}{4}$ 4) $\sin^{-1}\frac{\sqrt{5}}{4}$

2)
$$\sin^{-1} \frac{\sqrt{3}}{2}$$

3)
$$\sin^{-1}\frac{3}{4}$$

4)
$$\sin^{-1} \frac{\sqrt{5}}{4}$$

Sol:-
$$1 \times \sin \theta = \frac{5}{4} \sin (90 - C)$$

$$\sin\theta = \frac{5}{4}\cos C$$

But
$$sinC = \frac{1}{\mu} = \frac{4}{5}$$

$$\cos C = \frac{3}{5}$$

$$\sin\theta = \frac{5}{4} \times \frac{3}{5} = \frac{3}{4}$$

For T.I.R
$$\sin \theta < \frac{3}{4}$$

$$\theta = \sin^{-1}\frac{3}{4}$$

