MATHEMATICS

Section-1

1. For real numbers α and $\beta \neq 0$, if the point of intersection of straight lines $\chi-\alpha / 1=y-1 / 2=z-1 / 3$ and $x-4 / \beta=y-6 / 3=z-7 / 3$, lies on the plane $x+2 y-z=8$, then $\alpha-\beta$ is equal to :
A) (1) 5
B) (2) 9
C) (3) 3
D) (4) 7

Answer: D,
Explanation:
First line is $(\phi+\alpha, 2 \phi+1,3 \phi+1)$
and second line is $(q \beta+4,3 q+6,3 q+7)$.
for intersection $\phi+\alpha=q \beta+4 \ldots .$. (i)
$2 \phi+1=3 q+6$ \qquad
$3 \phi+1=3 q+7$. \qquad
for (ii) $\&($ iii $) \phi=1, q=-1$
so, from (i) $\alpha+\beta=3$
Now, point of intersection is $(\alpha+1,3,4)$
It lies on the plane.

$$
\stackrel{\text { le. }}{\mathrm{T}} \mathrm{H} \text { E }
$$

THE PERFECTGU\|DE
THE PERFECTGU\|DE
THE PERFECTGU\|DE

Hence, $\alpha=5 \& \beta=-2$

The point $P(a, b)$ undergoes the following threetransformations successively :
(a)reflection about the line $y=x$.
(b)translation through 2 units along the positivedirection of x-axis.
(c) rotation through angle $\frac{\pi}{4}$ about the origin inthe anti-clockwise direction.If the co-ordinates of the final position of the point P are $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ then the value of $2 a+b$ is equal to :
A) 13
B) 9
C) 5
D) 7

Answer: B,

Explanation:

Image of $A(a, b)$ along $y=x$ is $B(b, a)$. Translatingit 2 units it becomes $C(b+2 a)$.
Now, applying rotation theorem
$-\frac{1}{2}+\frac{7}{\sqrt{2}} i=((b+2)+a i)\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
$\frac{-1}{2}+\frac{7}{\sqrt{2}} i=\left(\frac{b+2}{\sqrt{2}}-\frac{a}{\sqrt{2}}\right)+i\left(\frac{b+2}{\sqrt{2}}+\frac{a}{\sqrt{2}}\right)$
$\Rightarrow b-a+2=-1$
and $b+2+a=7$
$\Rightarrow a=4 ; b=1$
$\Rightarrow 2 a+b=9$

THE PERFECTGUIDE
A) $(1) \operatorname{cosec} 2(21) \cos (20) \cos (2)$
B) $(2) \sec 2(1) \sec (21) \cos (20)$
C) (3) $\operatorname{cosec} 2(4) \sec 2(21) \sin (20) \sin (2)(1)$
D) $(4) \sec 2(21) \sin (20) \sin (2)$ $\operatorname{cosec}(21) \sin (20)$

Answer: C,
Explanation:
$f(x)=\cos \lambda x$
$\ldots f(1 / 2)=-1$
so, $-1=\cos \lambda / 2$
$\Rightarrow \lambda=2 \pi$

Thus $f(k)=\cos 2 \pi x$

Now k is natural number

Thus $f(k)=1$
\sum^{20}
\sum^{20}
$\sum_{k=1} 1 / \sin k \sin (k+1)=1 / \sin 1_{k=1}[\sin ((k+1)-k) / \sin k \cdot \sin (k+1)]$
$=1 / \sin \sum_{k=1}^{20}(\cot k-\cot (k+1)$
$=\cot 1-\cot 21 / \sin 1=\operatorname{cosec} 1 \operatorname{cosec}(21) \sin 20$
THE PERFECTGUIDE
4. A possible value of ' x ', for which the ninth term in the expansion of
$\left\{3^{\log _{3 \sqrt{25^{x-1}+7}}}+3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ in the increasing powers of $3\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)$ is equal to 180 , is :
A) 0
B) -1
C) 2
D) 1

Answer: D,

Explanation:
${ }_{10} C_{8}\left(25^{(x-1)}+7\right) \times\left(5^{(x-1)}+1\right)^{-1}=180$
$\Rightarrow \frac{25^{x-1}+7}{5^{(x-1)}+1}=4$
$\Rightarrow \frac{t^{2}+7}{t+1}=4 ;$
$\Rightarrow t=1,3=5^{x-1}$
$\Rightarrow x-1=0$ (one of the possible value)
$\Rightarrow x=1$

∞
 THE PERFECT GUIDE

 $+z(1-i) \geq 4\}$. Then the maximum value of $|z-5 / 2| 2$ for $z \in S 1 \bigcap S 2$ is equal to :A) (1) $3+2 \sqrt{2} / 4$
B) (2) $5+2 \sqrt{2} / 4$
C) $(3) 3+2 \sqrt{2} / 2$
D) (4) $5+2 \sqrt{2} / 4$

Answer: D,

Explanation:

$|t-2| \leq 1$ put t = x+iy

$(x-2) 2+y 2 \leq 1$
Also, $\mathrm{t}(1+\mathrm{i})+\mathrm{t}(1-\mathrm{i}) \geq 4$
Gives $x-y \geq 2$
Let point on circle be $A(2+\cos \pi \theta, \sin \theta)$
$\theta \in[-3 \pi / 4, \pi / 4]$
$(A P) 2=(2+\cos \theta-5 / 2) 2+\sin 2 \theta$
$=\cos 2 \theta-\cos \theta+1 / 4+\sin 2 \theta$
$=5 / 4-=\cos \theta$
THE PERFECT GUIDE

For (AP)2 maximum $\theta=-3 \pi / 4$
$(A P) 2=5 / 4+1 / \sqrt{2}=5 \sqrt{2}+4 / 4 \sqrt{2}$
6. A student appeared in an examination consisting of 8 true-false type questions. The student guessesthe answers with equal probability. The smallestvalue of n, so that the probability of guessing atleast ' n ' correct answers is less than $1 / 2$, is:
A) (1) 5
B) $(2) 6$
C) (3) 3
D) (4) 4

Answer: A,
Explanation:
$P(E)<\mathbf{1 / 2}$

$$
\Rightarrow \sum_{r=n}^{8} 8 \operatorname{Cr}(1 / 2) 8-r(1 / 2) r<1 / 2
$$

$$
\Rightarrow \sum_{r=n}^{8} 8 \operatorname{Cr}(1 / 2) 8<\mathbf{1} / 2
$$

$$
\Rightarrow 8 C n+8 C n+1+8 C 8<128
$$

$$
\Rightarrow 256-(8 \mathrm{C} 0+8 \mathrm{C} 1+1 \ldots+8 \mathrm{Cn}-1)<128
$$

$$
\Rightarrow 8 C 0+8 C 1+\ldots . .+8 C n-1>128
$$

$\Rightarrow \mathrm{n}-1 \geq 4$
$\Rightarrow n \geq 5$
7.

If $\tan (\pi / 9), x, \tan (7 \pi / 18)$ are in arithmeticprogression and $\tan (\pi / 9), y, \tan (5 \pi / 18)$ are also in arithmetic progression,then $|x-2 y|$ is equal to:
A) (1) 4

C) $(3) 0$

THE PERFECTD) 4414 | D E

Answer: C,
Explanation:
$x=1 / 2(\tan \pi / 9+\tan 7 \pi / 18)$
and $2 \mathrm{y}=\tan \pi / 9+\tan 5 \pi / 18)-(\tan \pi / 9+\tan 5 \pi / 18)$
$\Rightarrow|x-2 y|=|\cot \pi / 9-\tan \pi / 9 / 2-\tan 5 \pi / 18|$
$=|\cot 2 \pi / 9-\cot 2 \pi / 9|=0$
(as $\tan 5 \pi / 18=\cot 2 \pi / 9 ; \tan 7 \pi / 18=\cot \pi / 9)$
8. Let the mean and variance of the frequency distribution
x : $x 1=2 \times 2=6 \times 3=8 \times 4=9$
f: $44 \alpha \beta$
be 6 and 6.8 respectively .If $x 3$ is changed from 8 to 7 , then the mean forthe new data will be :
A) (1) 4
B) $(2) 5$
C) $(3) 17 / 3$
D) $(4) 16 / 3$

Answer: C,
Explanation:
Given $32+8 \alpha+9 \beta=(8+\alpha+\beta) \times 6$
$\Rightarrow 2 \alpha+3 \beta=16$
Also, $4 \times 16+4 \times \alpha+9 \beta=(8+\alpha+\beta) \times 6.8$
$\Rightarrow 640+40 \alpha+90 \beta=544+68 \alpha+68 \beta$
$\Rightarrow 28 \alpha-22 \beta=96$
$\Rightarrow 14 \alpha-11 \beta=48$
from (i) \&(iii)
$\alpha=5 \& \beta=2$
so, new mean $=32+35+18 / 15=85 / 15=17 / 3$

THE PERFECT GUIDE
9. The area of the region bounded by $y-x=2$ and $x 2=y$ is equal to :-
A) $(1) 16 / 3$
B) $(2) 2 / 3$
C) $(3) 9 / 2$
D) $(4) 4 / 3$

Answer: C,

Explanation:

$y-x=2, x 2=y$
Now, $x 2=2+x$
$\Rightarrow \mathrm{x} 2-\mathrm{x}-2=0$
$\Rightarrow(x+1)(x-2)=0$
Area $=\int_{-1}^{2}(2+x-x 2)$
$=|2 x+x 2 / 2-x 3 / 3| 2-1$
$=(4+2-8 / 3)-(-2+1 / 2+1 / 3)$
$=6-3+2-1 / 2=9 / 2^{\top}$
10. 10. Let the $y=y(x)$ be the solution of the differential equation $(x-x 3) d y=(y x 2-3 x 4) d x, x>2$. If $y(3)=3$, then $y(4)$ is equal to :
A) (1) 4
B) $(2) 12$
C) (3) 8
D) (4) 16

Answer: B,

Explanation:

$(x-x 3) d y=(y+y x 2-3 x 4) d x$
$\Rightarrow x d y-y d x=(y x 2-3 x 4) d x+x 3 d y$
$\Rightarrow x d y-y d x / x 2=(y d x+x d y)-3 x 2 d x$
$d(y / x)=d(x y)-d(x 3)$
Integrate
$y / x=x y-x 3+c$
Given $f(3)=3$
$3 / 3=3 x 3-33+c$
$c=19$
$y / x=x y-x 3+19$
at $x=4, y / 4=4 y-64+19$
$15 y=4 x 45$
$y=12$

Section-2

11.

The value of $\lim _{x \rightarrow 0}\left(\frac{x}{\sqrt[8]{1-\sin x}-\sqrt[8]{1+\sin x}}\right)$ is equal to :
A) 0
B) 4
C) -4
D) -1

Answer: C,

Explanation:

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(\frac{x}{\sqrt[8]{1-\sin x}-\sqrt[8]{1+\sin x}}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{x}{\sqrt[8]{1-\sin x}-\sqrt[8]{1+\sin x}}\right) \\
& \lim _{x \rightarrow 0}\left(\frac{x}{\sqrt[8]{1-\sin x}-\sqrt[8]{1+\sin x}}\right) \\
& \left(\frac{(\sqrt[8]{1-\sin x}+\sqrt[8]{1+\sin x})}{\sqrt[8]{1-\sin x}-\sqrt[8]{1+\sin x}}\right) \\
& \left(\frac{(\sqrt[4]{1-\sin x}+\sqrt[4]{1+\sin x})}{\sqrt[4]{1-\sin x}-\sqrt[4]{1+\sin x}}\right) \\
& \left(\frac{(\sqrt[2]{1-\sin x}+\sqrt[2]{1+\sin x})}{\sqrt[2]{1-\sin x}-\sqrt[2]{1+\sin x}}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{x}{1-\sin x-(1+\sin x)}\right) \\
& (\sqrt[8]{1-\sin x}+\sqrt[8]{1+\sin x})(\sqrt[4]{1-\sin x}+\sqrt[4]{1+\sin x}) \\
& (\sqrt[2]{1-\sin x}+\sqrt[2]{1 \mp \sin x}) \\
& =\lim _{x \rightarrow 0} \frac{x}{(-2 \sin x)}(\sqrt[8]{1-\sin x}+\sqrt[8]{1+\sin x}) \\
& (\sqrt[4]{1-\sin x}+\sqrt[4]{1+\sin x})(\sqrt[2]{1-\sin x}+\sqrt[2]{1+\sin x}) \\
& =\lim _{x \rightarrow 0}\left(-\frac{1}{2}\right)(2)(2)(2)\left\{\because \lim _{x} \frac{\sin x}{x}=1\right\}=-4 \\
& x \rightarrow 0
\end{aligned}
$$

12. Two sides of a parallelogram are along the lines $4 x+5 y=0$ and $7 x+2 y=0$. If the equation of oneof the diagonals of the parallelogram is $11 x+7 y=9$, then other diagonal passes through the point:
A) $(1,2)$
B) $(2,2)$
C) $(2,1)$
D) $(1,3)$

Answer: B,

Explanation:

Both the lines pass through origin.

point D is equal of intersection of $4 x+5 y=0 \& 11 x+7 y=9$
So,coordinates of point $D=\left(\frac{5}{3},-\frac{4}{3}\right)$
diagonals of paratletogram intersect at middle let middle point of B, D

$$
\begin{aligned}
& \Rightarrow\left(\frac{\frac{5}{3}-\frac{2}{3}}{2}, \frac{\frac{-4}{3}+\frac{7}{3}}{2}\right)=\left(\frac{1}{2}, \frac{1}{2}\right) \\
& \text { THE PERFECT GUIDE }
\end{aligned}
$$

Equation of diagonal AC

$$
\Rightarrow(y-0)=\frac{\frac{1}{\alpha}-0}{\frac{1}{\alpha}-0}(\alpha-0)
$$

$y=x$
diagonal AC passes through (2, 2).

27-07-2021 JEE MAINS (SHIFT - 2) PAPER - 1 MATHEMATICS MEMORY BASED
13.
$\alpha=\max \left\{8^{2 \sin 3 x} .4^{4 \cos 3 x}\right\}$ and $\beta=\min \left\{8^{2 \sin 3 x} .4^{4 \cos 3 x}\right\}$.ff $8 x^{2}+b x+c=0$
Let $x \in R \quad x \in R \quad$ is a quadratic equation whose roots are $\alpha^{1 / 5}$ and $\beta^{1 / 5}$,then the value of $c-b$ is equal to :
A) 42
B) 47
C) 43
D) 50

Answer: A,

Explanation:

$\alpha=\max \left\{8^{2 \sin 3 x} .4^{4 \cos 3 x}\right\}$
$=\max \left\{2^{6 \sin 3 x} .2^{8 \cos 3 x}\right\}$
$=\max \left\{2^{6 \sin 3 x+8 \cos 3 x}\right\}$
and $\beta=\min \left\{8^{2 \sin 3 x} .4^{4 \cos 3 x}\right\}=\min \left\{2^{6 \sin 3 x+8 \cos 3 x}\right\}$
$=\left[-\sqrt{6^{2}+8^{2}},+\sqrt{6^{2}+8^{2}}\right]=[-10,10]$
$\alpha=2^{10} \& \beta=2^{-10}$
So,$\alpha^{1 / 5}=2^{2}=4$
$\Rightarrow \beta^{1 / 5}=2^{-2}=1 / 4$
quadratic $8 x^{2}+b x+c=0, c-b=8 \times[$ (product of roots $]+$ (sum of roots)
$=8 \times\left[4 \times \frac{1}{4}+4+\frac{1}{4}\right]=8 \times\left[\frac{21}{4}\right]=42$
Now range of $6 \sin 3 x+8 \cos 3 x$

THE PERFECTGUIDE

Let $f:[0, \infty) \rightarrow[0,3]$ be a function defined by $f(x)=\{2+\cos x, x>\pi$ Then which of the following is true ?
A) f is continuous everywhere but not differentiableexactly at one point in $(0, \infty)$
C) f is not continuous exactly at two points in $(0, \infty)$
B) f is differentiable everywhere in $(0, \infty)$
D) f is continuous everywhere but not differentiable exactly at two points in $(0, \infty)$

Answer: B,
 Explanation:
 Graph of max\{sint: $0 \leq t \leq x\}$ in $x \in[0, \pi]$

\& graph of \cos for $x \in[\pi, \infty)$

THE PERFECTGUIDE
So graph of
$f(x)=\left\{\begin{array}{l}\max \{\sin t: 0 \leq t \leq x, 0 \leq x \leq \pi \\ 2+\cos x x>h\end{array}\right.$

$f(x)$ is differentiable everywhere in $(0, \infty)$
15. Let N be the set of natural numbers and a relation R on N be defined by
$R=\left\{(x, y) \in N \times N: x^{3}-3 x^{2} y-x y^{2}+3 y^{3}=0\right\}$
Then the relation R is :
A) symmetric but neither reflexive nor
B) reflexive but neither symmetric nor transitive
C) reflexive and symmetric, but not
D) an equivalence relation transitive

Answer: B,
Explanation:

$$
\begin{aligned}
& x^{3}-3 x^{2} y-x y^{2}+3 y^{3}=0 \\
& \Rightarrow x\left(x^{2}-y^{2}\right)-3 y\left(x^{2}-y^{2}\right)=0 \\
& \Rightarrow(x-3 y)(x-y)(x+y)=0
\end{aligned}
$$

Now $x=y \forall(x, y) \in N \times N$ so reflexive

But not symmetric \& transitive

See, $(3,1)$ satisfies but $(1,3)$ does not. Also $(3,1) \&(1,-1)$ satisfies but $(3,-1)$ does not
16. Which of the following is the negation of the statement " for all $M>0$, there exists $x \in S$ such that $x \geq M^{\prime \prime}$?
A) there exists $M>0$, such that $\mathrm{X}<\mathrm{M}$ for all $x \in S$
B) there exists $M>0$, there exists $x \in S$ such that $x \geq M$
C) there exists $M>0$, there exists $x \in S$ such that $x<M$

D) there exists $M>0$, such that $X \geq M$ for all $x \in S$
Answer: A,
Explanation: THE PERFECT GUIDE \mathbf{P} : for all $\mathrm{M}>0$, there exists $x \in S$ such that $x \geq M$.
$\sim P$: there exists $M>0$, for all $x \in S$
Such that $\mathrm{x}<\mathrm{m}$
Negation of 'there exsits' is 'for all'.
17. Consider a circle C which touches the y-axis at $(0,6)$ and cuts off an intercept $6 \sqrt{5}$ on the x axis.Then the radius of the circle C is equal to :
A) $\sqrt{53}$
B) 9
C) 8
D) $\sqrt{82}$

Answer: B,

Explanation:

$$
\begin{aligned}
& r=\sqrt{6^{2}+(3 \sqrt{5})^{2}} \\
& =\sqrt{36+45}=9
\end{aligned}
$$

18. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a}=\vec{b} \times(\vec{b} \times \vec{c})$. If magnitudes of the vectors \vec{a}, \vec{b} and \vec{c} are $\sqrt{2,1}$ and 2 respectively and the angle between \vec{b} and \vec{c} is $\theta\left(0<\theta<\frac{\pi}{2}\right)$ then the value of $1+\tan \theta$ is equal to :
A) $\sqrt{3}+1$
C) 1
B) 2

Answer: B,
THE PERFECTGUIDE
Explanation:

$$
\begin{aligned}
& \vec{a}=(\vec{b} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{b}) \vec{c} \\
& =1 \cdot 2 \cos \theta \vec{b}-\vec{c} \\
& \Rightarrow \vec{a}=2 \cos \theta \vec{b}-\vec{c} \\
& |\vec{a}|^{2}=(2 \cos \theta)^{2}+2^{2}-2 \cdot 2 \cos \theta \vec{b} \cdot \vec{c} \\
& \Rightarrow 2=4 \cos ^{2} \theta+4-4 \cos \theta \cdot 2 \cos \theta \\
& \Rightarrow-2=-4 \cos ^{2} \theta \\
& \Rightarrow \cos ^{2} \theta=\frac{1}{2} \\
& \Rightarrow \sec ^{2} \theta=2 \\
& \Rightarrow \tan ^{2} \theta=1 \\
& \Rightarrow \theta=\frac{\pi}{4} \\
& 1+\tan ^{2} \theta=2
\end{aligned}
$$

19. Let A and B be two 3×3 real matrices such that $\left(A^{2}-B^{2}\right)$ is invertible matrix. If $A^{5}=B^{5}$ and $A^{3} B^{2}=A^{2} B^{3}$, then the value of the determinant of the matrix $A^{3}+B^{3}$ is equal to
A) 2
B) 4
C) 1
D) 0

Answer: D,

Explanation:

$$
\begin{aligned}
& C=A^{2}-B^{2} ;|C| \neq 0 \\
& A^{5}=B^{5} \text { and } A^{3} B^{2}=A^{2} B^{2} \\
& \text { Now, } A^{5}-A^{3} B^{2}=B^{5}-A^{2} B^{3} \\
& \Rightarrow A^{3}\left(A^{2}-B^{2}\right)+B^{3}\left(A^{2}-B^{2}\right)=0 \\
& \Rightarrow\left(A^{3}+B^{3}\right)\left(A^{2}-B^{2}\right)=0
\end{aligned}
$$

Post multiplying inverse of $A^{2}-B^{2}$
$A^{3}+B^{3}=0$
20.

Let $f:(a, b) \rightarrow \mathbf{R}$ be twice differentiable function such that $f(x)=\int_{a}^{x} g(t) d t$ for a differentiablefunction $\mathrm{g}(\mathrm{x})$. If $f(\mathrm{x})=0$ has exactly five distinct roots in (a, b), then $\mathrm{g}(\mathrm{x}) \mathrm{g}^{\prime}(\mathrm{x})=0$ has at least :
A) twelve roots in (a, b)
B) five roots in (a, b)
C) seven roots in (a, b)
D) three roots in (a, b)

$$
\begin{aligned}
& f(x)=\int_{a}^{x} g(t) d t \\
& f(x) \rightarrow 5 \\
& f^{\prime}(x) \rightarrow 4 \\
& g(x) \rightarrow 4 \\
& g^{\prime}(x) \rightarrow 3
\end{aligned}
$$

21. Let $\vec{a}=\hat{i}-\alpha \hat{j}+\beta \hat{k}, \vec{b}=3 \hat{i}+\beta \hat{j}-\alpha \widehat{k}$ and $\vec{c}=-\alpha \hat{i}-2 \hat{j}+\hat{k}$, where α and β are integers. if $\vec{a} \cdot \vec{b}=-1$ and $\vec{b} \cdot \vec{c}=10$, then $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is equal to \qquad _.

Answer: \qquad

Answer: 9

Explanation:

$\vec{a}=(1,-\alpha, \beta)$
$\vec{b}=(3, \beta, \alpha)$
$\overrightarrow{\mathrm{c}}=(-\alpha,-2,1) ; \alpha, \beta \in \mathrm{I}$
$\vec{a} \cdot \vec{b}=-1 \Rightarrow 3-\alpha \beta-\alpha \beta=-1$
$\Rightarrow \alpha \beta=2$
12
21
-1 -2
-2 -1
$\vec{b} \cdot \vec{c}=10$
$\Rightarrow-3 \alpha-2 \beta-\alpha=10$
$\Rightarrow 2 \alpha+\beta+5=0$
$\therefore \alpha=-2, \beta=-1$
$\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=\left|\begin{array}{ccc}1 & 2 & -1 \\ 3 & -1 & 2 \\ 2 & -2 & 1\end{array}\right|$
$=1(-1+4)-2(3-4)-1(-6+2)$
$=3+2+4=9$
22. The distance of the point $P(3,4,4)$ from the point of intersection of the line joining the points. $Q(3,-4,-5)$ and $R(2,-3,1)$ and the plane $2 x+y+z=7$, is equal to \qquad -.

Answer: \qquad THE PERFEC Answer: 7
Explanation:
$\overrightarrow{Q R}=\frac{x-3}{1}=\frac{y+4}{-1}=\frac{z+5}{-6}=r$
$\Rightarrow(x, y, z) \equiv(r+3,-r-4,-6 r-5)$

Now, satisfying it in the given plane.

We get $\mathbf{r}=\mathbf{- 2}$.

so, required point of intersection is $T(1,-2,7)$.
Hence, PT = 7 .
23. If the real part of the complex number $z=\frac{3+2 i \cos }{1-3 i \cos \theta}, \theta \in\left(0, \frac{\pi}{2}\right)$ is zero, then the value of $\sin ^{2} 3 \theta+\cos ^{2} \theta=$

Answer: \qquad

Answer: 1

Explanation:

$\operatorname{Re}(z)=\frac{3-6 \cos ^{2} \theta}{1+9 \cos ^{2} \theta}=0$
$\Rightarrow \theta=\frac{\pi}{4}$
Hence, $\sin ^{2} 3 \theta+\cos ^{2} \theta=1$
24. Let E be an ellipse whose axes are parallel to the co-ordinates axes, having its center at ($3,-4$), one focus at $(4,-4)$ and one vertex at $(5,-4)$. If $m x-y=4, m>0$ is a tangent to the ellipse E, then the value of $5 \mathrm{~m}^{2}$ is equal to \qquad
Answer: \qquad
Explanation:
GivenC(3, -4), S(4, -4)

andA $(5,-4) \quad$ THE PERFECT GUIDE
hencea $=2$ \& $a e=1$
$\Rightarrow \mathrm{e}=\frac{1}{2}$
$\Rightarrow b^{2}=3$
So, $E=\frac{(x-3)^{2}}{4}+\frac{(y+4)^{2}}{3}=1$
Intersecting with given tangent.
$\frac{x^{2}-6 x+9}{4}+\frac{m^{2} x^{2}}{3}=1$

Now, $\mathrm{D}=\mathbf{0}$ (as it is tangent)

So, $5 \mathrm{~m}^{2}=3$
25.

If $\int_{0}^{x}\left(\sin ^{3} x\right) e^{-\sin ^{2} x} d x=\alpha=\frac{\beta}{e} \int_{0}^{1} \sqrt{t} e^{t} d t$, then $\alpha+\beta=$ \qquad
Answer: \qquad

Answer: 5

Explanation:

$I=2 \int_{0}^{\pi / 2} \sin ^{3} x e^{-\sin ^{2} x} d x$
$=2 \int_{0}^{\pi / 2} \sin x e^{-\sin ^{2} x} d x+\int_{0}^{\pi / 2} \cos x e^{-\sin ^{2} x}(-\sin 2 x) d x$
$=\int_{0}^{\pi / 2} \sin x e^{-\sin ^{2} x} d x+\left[\cos x e^{-\sin ^{2} x}\right]_{0}^{\pi / 2}+\int_{0}^{\pi / 2} \sin x e^{-\sin ^{2} x} d x$
$=3 \int_{0}^{\pi / 2} \sin x e^{-\sin ^{2} x} d x-1$
$=\frac{3}{2} \int_{-1}^{0} \frac{e^{\alpha} d \alpha}{\sqrt{1+\alpha}}-1$ (Put $\left.-\sin ^{2} x=t\right)$
$=\frac{3}{2 e} \int_{0}^{1} \frac{e^{x}}{\sqrt{x}} d x-1$ (Put $\left.1+\alpha=x\right)$
$=\frac{3}{2 e} \int_{0}^{1} e^{x} \frac{1}{\sqrt{x}} d x-1$
$=2-\frac{3}{e} \int_{0}^{1} e^{x} \sqrt{x} d x$
Hence, $\alpha+\beta=5$ \qquad
Answer: \qquad

Answer: 2

Explanation:

$$
\begin{aligned}
& \mathrm{t}^{4}-\mathrm{t}^{3}-4 \mathrm{t}^{2}-\mathrm{t}+1=0, \mathrm{e}^{\mathrm{x}}=\mathrm{t}>0 \\
& \Rightarrow \mathrm{t}^{2}-\mathrm{t}-4-\frac{1}{\mathrm{t}}+\frac{1}{\mathrm{t}^{2}}=0 \\
& \Rightarrow \alpha^{2}-\alpha-6=0, \alpha=\mathrm{t}+\frac{1}{\mathrm{t}} \geq 2 \\
& \Rightarrow \alpha=3,-2 \text { (reject) } \\
& \Rightarrow \mathrm{t}+\frac{1}{\mathrm{t}}=3
\end{aligned}
$$

The number of real roots $=2$
27. Let $=y(x)$ be the solution of the differential equationdy $=e^{\alpha x+y} d x ; \alpha \in N$. If $y\left(\log _{e} 2\right)=\log _{e} 2$ and $y(0)=\log _{e}\left(\frac{1}{2}\right)$, then the value of d is equal to \qquad .

Answer: \qquad

Answer: 2

Explanation:

$\int e^{-y} d y=\int e^{\alpha x} d x$
$\Rightarrow e^{-y}=\frac{e^{\alpha x}}{\alpha}+c$
put $(x, y)=(\ln 2, \ln 2)$
$\frac{-1}{2}=\frac{2^{\alpha}}{\alpha}+C$
Put $(x, y)=(0,-\ln 2)$ in (i)
$-2=\frac{1}{\alpha}+C$
(ii) - (iii)
$\frac{2^{\alpha}-1}{\alpha}=\frac{3}{2}$
$\Rightarrow \alpha=2($ as $\alpha \in N)$
28. Let n be a non-negative integer. Then the number of divisors of the form " $4 \mathrm{n}+1$ " of the number ${ }^{(10) 10} \cdot(11)^{11} \cdot(13)^{13}$ is equal to

Answer: \qquad

Answer: 924
Explanation:
THE P ERFEC
$N=2^{10} \times 5^{10} \times 11^{11} \times 13^{13}$

Now, power of 2 must be zero,
power of 5 can be anything,
power of 13 can be anything.
But, power of 11 should be even.
So, required number of divisors is $1 \times 11 \times 14 \times 6=924$
29. Let $A=\{n \in N \mid n \leq n+10,000\}, B=\{3 k+1 \mid k \in N\}$ and $C=\{2 k \mid k \in N\}$, then the sum of all the elements of the set $A \cap(B-C)$ is equal to \qquad
Answer: \qquad

Answer: 832

Explanation:

$B-C=\{7,13,19, \ldots, 97, \ldots\}$
Now, $n^{2}-\mathrm{n} \leq 100 \leq 100$
$\Rightarrow \mathrm{n}(\mathrm{n}-1) \leq 100 \times 100$
$\Rightarrow A=\{1,2, \ldots, 100\}$
So, $A \cap(B-C)=\{7,13,19, \ldots ., 97\}$
Hence, Sum $=\frac{16}{2}(7+97)=832$
30.

If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]_{\text {andM }}=A+A^{2}+A^{3}+\ldots+A^{20}$, then the sum of all the elements of the matrixM is equal to \qquad
Answer: \qquad
Explanation:
$\begin{aligned} & A^{n}=\left[\begin{array}{ccc}1 & n & \frac{n^{2}+}{2} \\ 0 & 1 & n \\ 0 & 0 & 1\end{array}\right] \\ &=120 \times 3+2 \times\left(\frac{20 \times 21}{F-E_{2} T}\right)+\sum_{r=1}^{20}\left(\frac{r^{2}+r}{(L-2 E}\right)\end{aligned}$
So, required sum $=60+420+105+35 \times 41=2020$

