CHEMISTRY

1.

(1)

(2)

(3)

(4)

Ans. (2)
2. Green house gases are
(I) CO_{2}
(II) Methane
(III) O_{2}
(IV) Water vapour
(1) I, II, III
(2) I, II, IV
(3) I, III
(4) III, IV

Ans. (2)
3. Which of the following reagent is used for given conversion?

(1) Anhydrous $\mathrm{AlCl}_{3} / \mathrm{Cl}_{2}$ (dark)
(2) $\mathrm{HCl}+\mathrm{ZnCl}_{2}$
(3) $\mathrm{Cl}_{2} / \mathrm{h} v$
(4) $\mathrm{Cl}_{2} / \mathrm{CCl}_{4}$

Ans. (3)
4. Match the column
(A) CuO
(I) Halogen
(B) AgNO_{3}
(II) Sulphur
(C) Lassaigne
(III) Carbon
(D) Black ppt with $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{~Pb}$
(IV) Nitrogen
(1) $\mathrm{A} \rightarrow$ III ; B \rightarrow I ; C \rightarrow IV , D \rightarrow II
(2) $\mathrm{A} \rightarrow \mathrm{IV} ; \mathrm{B} \rightarrow \mathrm{III} ; \mathrm{C} \rightarrow \mathrm{II}, \mathrm{D} \rightarrow \mathrm{I}$
(3) $\mathrm{A} \rightarrow$ III ; B \rightarrow I ; C \rightarrow II , D \rightarrow IV
(4) A \rightarrow IV ; B \rightarrow I ; C \rightarrow III , D \rightarrow II

Ans. (1)
5. Compound (X) $\xrightarrow{\mathrm{O}_{3}} \mathrm{Y} \xrightarrow{\mathrm{AgNO}_{3}}$ silver mirror

Which of the following is [X]
(1)

(2) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
(3)

(4) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$

Ans. (4)
6. Wooden laminates are made by
(1) Urea-formaldehyde resin
(2) Melamine-formaldehyde resin
(3) Phenol-formaldehyde resin
(4) PVC

Ans. (2)
7. Which of the following is least basic among the following compounds?
(1) $\mathrm{Et}_{3} \mathrm{~N}$
(2) $(\mathrm{Et})_{2} \mathrm{NH}$
(3) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{NH}$
(4)

Ans. (3)
8.

Reagent is
(1) LiAlH_{4}
(2) NaBH_{4}
(3) $\mathrm{ZnHg} / \mathrm{HCl}$
(4) $\mathrm{KMnO}_{4} / \mathrm{H}^{\oplus}$

Ans. (4)
9. Ammonolysis of alkyl halide to prepare primary, secondary and tertiary amines followed by NaOH is
(1) to remove acidic impurities
(2) to remove basic impurities
(3) to activate halide
(4) to activate ammonia

Ans. (1)
10. Secondary structure of protein in stabilized by
(1) H-bond
(2) Vanderwaal force of attraction
(3) Peptide bond
(4) Glycosidic linkage

Ans. (1)
11. Statement-1: NaH can be used as an oxidising agent.

Statement-2: Pyridine is basic due to lone pair of nitrogen.
(1) Both Statement-1 and Statement-2 are correct
(2) Both Statement-1 and Statement-2 are false
(3) Statement-1 is correct and Statement-2 is false
(4) Statement-1 is false and Statement-2 is correct

Ans. (4)
12. Vapour pressure of pure liquid $A \& B$ are $21 \& 18 \mathrm{~mm}$ of Hg respectively. Determine vapour pressure of a solution (in mm of Hg) obeying Raoult's law containing 1 mole of A \& 2 mole of B.
Ans. (19)
Sol. $\quad \mathrm{X}_{\mathrm{A}}=\frac{1}{1+2}=\frac{1}{3}$

$$
\mathrm{X}_{\mathrm{B}}=\frac{2}{3}
$$

$\mathrm{P}_{\mathrm{A}}^{\circ}=21 \mathrm{~mm}$ of Hg
$\mathrm{P}_{\mathrm{B}}^{\circ}=18 \mathrm{~mm}$ of Hg
$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}^{\circ} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}^{\circ} \mathrm{X}_{\mathrm{B}}$
$=21 \times \frac{1}{3}+18 \times \frac{2}{3}$
$=7+12=19 \mathrm{~mm}$ of Hg
13. Two elements $\mathrm{A} \& \mathrm{~B}$ have following ionisation energy data:

	$\mathbf{I E}_{\mathbf{1}}$	$\mathbf{I E}_{\mathbf{2}}$
A	400	$4000($ in $\mathrm{kJ} / \mathrm{mol})$
B	700	$1400($ in kJ/mol $)$

A \& B are respectively :
(1) Na, Mg
(2) Mg, Na
(3) Na, F
(4) Mg, F

Ans. (1)
14. Half life time of two first order reactions
$\mathrm{A} \longrightarrow$ Products
$\mathrm{B} \longrightarrow$ Products
are $54 \& 18 \mathrm{~min}$ respectively. Starting with equimolar quantities of $A \& B$, determine the time after which $[\mathrm{A}]=16[\mathrm{~B}]$
Ans. (108)
Sol. $[\mathrm{A}]_{\mathrm{t}}=\frac{[\mathrm{A}]_{0}}{2^{\frac{\text { Time }}{54}}}$

$$
[\mathrm{B}]_{\mathrm{t}}=\frac{[\mathrm{B}]_{0}}{2^{\frac{\text { Time }}{18}}}
$$

$\because[\mathrm{A}]_{0}=[\mathrm{B}]_{0}$ and $[\mathrm{A}]_{\mathrm{t}}=16[\mathrm{~B}]_{\mathrm{t}}$
$\frac{[\mathrm{A}]_{0}}{2^{\frac{T}{54}}}=16 \frac{[\mathrm{~A}]_{0}}{2^{\frac{T}{18}}}$
$16=2^{\frac{\mathrm{T}}{18}-\frac{\mathrm{T}}{54}}$
$16=2^{\frac{2 \mathrm{~T}}{54}}$
$2^{4}=2^{\frac{2 T}{54}}$
$4=\frac{2 \mathrm{~T}}{54}$
$\mathrm{T}=108 \mathrm{~min}$
15. If both $\mathrm{FeX}_{2} \& \mathrm{Fe}_{3}$ are found to exist, $\mathrm{X} \& \mathrm{Y}$ can be :
(1) $\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I} \quad \mathrm{Y}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$
(2) $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
$\mathrm{Y}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
(3) $\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br} \quad \mathrm{Y}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
(4) $X=F, C l, B r, I$
$\mathrm{Y}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$

Ans. (1)
Sol. $\quad \mathrm{FeI}_{3}$ does not exist because of I^{-}being very good reducing agent.
16. Which of the following cannot be reduced by coke?
(1) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(2) ZnO
(3) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(4) $\mathrm{Cu}_{2} \mathrm{O}$

Ans. (1)
17. Volume of 1 M NaOH solution required to neutralise $50 \mathrm{~mL} 1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{3}$ \& $100 \mathrm{ml} 2 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{2}$ respectively are
(1) $100 \mathrm{ml}, 200 \mathrm{ml}$
(2) $200 \mathrm{ml}, 100 \mathrm{ml}$
(3) $50 \mathrm{ml}, 100 \mathrm{ml}$
(4) $100 \mathrm{ml}, 50 \mathrm{ml}$

Ans. (1)
Sol. (1) $\underset{100 \mathrm{~m} \text { mole }}{2 \mathrm{NaOH}}+\underset{50 \mathrm{~m} \text { mole }}{\mathrm{H}_{3} \mathrm{PO}_{3}} \longrightarrow \mathrm{Na}_{2} \mathrm{HPO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
100 m mole $=\mathrm{M} \times \mathrm{V}_{\mathrm{ml}}$
100 m mole $=1 \times \mathrm{V}_{\mathrm{ml}}$
$\mathrm{V}_{\mathrm{ml}}=100 \mathrm{ml}$
(2) $\underset{200 \mathrm{~m} \text { mole }}{\mathrm{NaOH}}+\underset{200 \mathrm{~m} \text { mole }}{\mathrm{H}_{3} \mathrm{PO}_{2}} \longrightarrow \mathrm{NaH}_{2} \mathrm{PO}_{2}+\mathrm{H}_{2} \mathrm{O}$

200 m mole $=\mathrm{M} \times \mathrm{V}_{\mathrm{ml}}$
$\mathrm{V}_{\mathrm{ml}}=200 \mathrm{ml}$
18. Elements with atomic number $33,53 \& 83$ are respectively
(1) Metalloid, Non-metal, Metal
(2) Metal, Non-metal, Metalloid
(3) Non-metal, Metal, Metalloid
(4) Metalloid, Metal, Non-metal

Ans. (1)
Sol. Atomic number Element
$33 \rightarrow$ As (Metalloid)
$53 \rightarrow$ I (Non-metal)
$83 \rightarrow$ Bi (Metal)
19. Which of the following are correct for $\mathrm{H}_{2} \mathrm{O}_{2}$
(A) Used in pollution control treatment of industrial effluents.
(B) $\mathrm{H}_{2} \mathrm{O}_{2}$ can act as both oxidising agent \& reducing agent
(C) Miscible in water
(D) two hydroxy groups are in same plane
(1) ABC
(2) ACD
(3) ABCD
(4) BCD

Ans. (1)
Sol. In $\mathrm{H}_{2} \mathrm{O}_{2}{ }^{-1}$ oxidation state of oxygen is -1 therefore acts both as oxidising agent \& reducing agent. $\mathrm{H}_{2} \mathrm{O}_{2}$ is miscible in water due to intermolecular H -bonding.
$\mathrm{H}_{2} \mathrm{O}_{2}$ has open book structure in which both - OH groups are not in same plane
20. Arrange the following compounds (assuming to be high spin) in increasing order of spin magnetic moment :
(1) $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]<\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}<\mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3}$
(2) $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]<\mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3}<\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}$
(3) $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}<\mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3}<\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]$
(4) $\mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3}<\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]<\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}$

Ans. (1)
Sol. $\quad\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right](\mathrm{n}=0) \Rightarrow \mu=0 \mathrm{BM}$
$\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{n}=6) \Rightarrow \mu=6.93 \mathrm{BM}$
$\mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{n}=7) \Rightarrow \mu=7.94 \mathrm{BM}$
21. Gallium (At. Mass $=70$) crystallises in HCP lattice. If the total number of voids in 0.581 gram of gallium is $\mathrm{x} \times 10^{21}$ then determine ' x ' :
Ans. 15
Sol. No. of moles of $\mathrm{Ga}=\frac{0.581}{70}$
No. of atoms of $\mathrm{Ga}=\frac{0.581}{70} \times \mathrm{N}_{\mathrm{A}}$
\therefore Total no. of voids $=\frac{0.581}{70} \times \mathrm{N}_{\mathrm{A}} \times 3$
$=0.0249 \times 6 \times 10^{23}$
$=15 \times 10^{21}$
As there are one octahedral void and two tetrahedral voids per atom.
22. Which of the following is incorrect?
(1) $\mathrm{Al}^{3+}>\mathrm{Na}^{+}$flocculation power
(2) Colloids show Brownian motion
(3) Colloids show colligative property
(4) Colloidal solution can not pass through ordinary filter paper

Ans. (4)
Sol. Colloidal solution can pass through ordinary filter paper but can not pass through special filter paper.
23. Number of orbitals having $\mathrm{m}_{\ell}=+2$ in $\mathrm{n}=5$ are:

Ans. (3)
Sol. $\mathrm{n}=5$
$\ell=0,1,2,3,4$
$\ell=2 \rightarrow \mathrm{~m}=-2,-1,0,+1,+2$
$\ell=3 \rightarrow \mathrm{~m}=-3,-2,-1,0,+1,+2,+3$
$\ell=4 \rightarrow \mathrm{~m}=-4,-3,-2,-1,0,+1,+2,+3,+4$
24. Incorrect statement regarding C_{60} is:
(1) It has 24 6-membered rings \& 125 -membered rings.
(2) It has 5 -membered rings only attached to 6 -membered rings.
(3) It has 6-membered rings attached to both $5 \& 6$-membered rings.
(4) Each Carbon is attached to 3 C-atoms.

Ans. (1)
25. The number of mol of PbSO_{4} obtained on reacting 35 ml of $0.15 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ with $50 \mathrm{ml}, 0.2 \mathrm{M}$ $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is $\mathrm{x} \times 10^{-5}$. Find x .
Ans. (525)
Sol. $\quad 3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \longrightarrow 3 \mathrm{PbSO}_{4}+2 \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$
m.mol. $\quad 5.25$ (L.R.) 10
$0 \quad \begin{array}{ll} & 5.25 \mathrm{~m} . \mathrm{mol} \\ & \text { formed } \\ & \Rightarrow \text { i.e. }=525 \times 10^{-5} \\ & \therefore \mathrm{x}=525\end{array}$
26. Determine pH of $0.588 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}$ solution given $\mathrm{K}_{\mathrm{a}_{1}}=1.7 \times 10^{-2} \mathrm{~K}_{\mathrm{a}_{2}}=10^{-8}$

Ans. (1)
Sol. $\frac{0.588 \alpha^{2}}{1-\alpha}=1.7 \times 10^{-2}$

$$
\begin{aligned}
& \frac{\alpha^{2}}{1-\alpha}=0.029 \quad \therefore \alpha^{2}+0.029 \alpha-0.029=0 \\
& \alpha=\frac{-0.029+\sqrt{(0.029)^{2}+4(1)(0.029)}}{2} \\
& =0.1564 \\
& {\left[\mathrm{H}^{+}\right]=0.588 \times 0.1564=0.092 \mathrm{M}} \\
& \mathrm{pH}=2-\log 9.2=2-0.964=1.036 \approx 1
\end{aligned}
$$

