25-07-2021-SHIFT-1 PAPER-1 CHEMISTRY MEMORY BASED

- 1. In the combustion of butane 72 gm of H_2O is produced. The amount of butane taken initially is $[X] \times 10^{-1}$. The value of 'X' is
- Ans 464

Sol. $C_4 H_{10} + \frac{13}{2}O_2 \rightarrow 4CO_2 + 5H_2O$ $C_n H_{2n+2} + \left(\frac{3n+1}{2}\right)O_2 \rightarrow nCO_2 + (n+1)H_2O$

Q 1 mole C_4H_{10} produces 5 mole H_2O

5 mole
$$(5 \times 18) = 90 gm$$

 $90gm \rightarrow 58gm$

$$72gm \rightarrow \left(\frac{58 \times 72}{90}\right) = 46.4gm$$

2. A+Bf 2C.

Initially 1 mole each of A,B and C are taken in 1 litre vessel. Equilibrium constant is 100. The concentration of C at equilibrium in $[X] \times 10^{-1}$. The value of 'X' is

Sol.
$$A + Bf 2C K_c = 100$$

 $t = 0 1 1$
 $t = t_{eq} 1 - x 1 - x$
 $K_c = \frac{(1 + 2x)^2}{(1 - x)^2}$
 $100 = \frac{(1 + 2x)^2}{(1 - x)^2} of [C]$
 $10 = \frac{(1 + 2x)}{(1 - x)}$
 $x = \frac{3}{4}$

Concentration of $[C] = 1 + 2\left(\frac{3}{4}\right) = 25 \times 10^{-1}$

3. In the leaching of Bauxite, which oxide is leached out using NaOH.

1) Fe_2O_3 2) Al_2O_3 3) TiO_2 4) SiO_2

Ans: 2

Sol:

Al₂O₃ .xH₂O + NaOH
$$\longrightarrow$$
 NaAlO₂
 \downarrow H₂O
Al(OH)₃ + NaOH
Al (OH)₃ 1200K Al₂O₃

(pure)

4. Among the given oxides

 $(i)CrO_3$ $(ii)V_2O_5$ $(iii)Fe_2O_3$ $(iv)MnO_2$

The correct increasing order of oxidation state of metal is

1)
$$(i) < (ii) < (iii) < (iv)$$
 2) $(ii) < (iii) < (i) < (iv)$

 3) $(iii) < (iv) < (i) < (ii)$
 4) $(iii) < (iv) < (ii) < (i)$

Ans 4

Sol.

	Compound	Oxidation state of metal	
(i)	CrO ₃	+6	
(ii)	V_2O_5	+5	
(iii)	Fe_2O_3	+3	
(iv)	MnO ₂	+4	

5. Find the concentration of Fe^{2+} (10ml) required to reduce 15 ml of $0.1M K_2 Cr_2 O_7$ solution is:

Ans 0.9

Sol. $Cr_2O_7^{2-} + Fe^{2+} \to Fe^{3+} + Cr^{3+}$

15*ml* 10*ml*

0.1M

$$N_1V_1 = N_2V_2$$

 $15 \times 0.1 \times 6 = 10 \times M \times 1$

$$M = 0.9 Molar$$

6. Arrange the following ions in the increasing order of size $Na^+, K^+, Mg^{+2}, All^{+3}$

1) $Al^3 + < Mg2 + < Na^+ < K^+$ 2) $k^+ < Na^+ < Al^3 + < Mg2 +$ 3) $Al^3 + < Mg2 + < K^+ < Na^+$ 4) $Mg2 + << Al^3 < K^+ < Na^+$

Ans 1

Sol. $K^+ > Na^+$ {moving down the group size increases} $Na^+ > Mg^{+2} > Al^3$ {Isoelectronic species} Z 11 12 13 E 10 10 10

7. Henry's law constant for CO_2 in water in $0.835 \times 2 \times 10^3 bar$. How many milimoles of CO_2 would dissolve in 0.9 litre water? Assume CO_2 gas exerts a partial pressure of 0.853 bar.

Ans 25

Sol
$$P_{CO_2} = K_H X_{CO_2}$$

 $X_{CO_2} = \frac{P_{CO_2}}{K_H} = \frac{0.835}{0.835 \times 2 \times 10^3}$
 $X_{CO_2} = 0.5 \times 10^{-3}$
Number of moles of water $= \frac{900}{18} = 50$
 $\frac{n_{CO_2}}{n_{CO_2} + nH_2O} = 0.5 \times 10^{-3}$
(n_{CO_2} in denominator is neglected as it is<50)
 $n_{CO_2} = 0.5 \times 10^{-3} \times 50 = 25 \times 10^{-3}$ moles
 $= 25 \text{ mili moles}$
8. Which of the following does not exist.
(1) SiF_6^{2-} (2) $SiCl_6^{2-}$ (3) $GeCl_6^{2-}$ (4) $Sn(OH)_6^{2-}$

Ans 2

Sol. The main reasons are:

(i) Six large chloride ions cannot be accommodated around Si^{4+} due to limitation of its size.

(ii) Interaction between lone pair of chloride ion and Si^{4+} is not very strong.

The species like, SiF_6^{2-} , $[GeCl_6]^{2-}$, $[Sn(OH)_6]^{2-}$ exist where the hybridisation of the central atom is sp^3d^2 .

9. Which of the following complex is active in magnetic field.

1)
$$\left[Fe(H_2O)_6\right]^{3+}$$
 2) $\left[Co(CN)_6\right]^{3-}$ 3) $\left[Ni(Co)_4\right]$ 4) $\left[Ni(CN)_4\right]^2$

Ans

Sol. $Fe^{3+}; 3d^5$

1

If will contain 5 unpaired electrons.

Thus it is paramagnetic and attracted in external magnetic field.

10. Empirical formula of a given octahedral complex is $CrCl_3.3NH_3.3H_2O$. It precipitates 3 moles of *AgCl*. What is the secondary valency of central atom.

Ans

4

Sol. $\left[Cr(NH_3)_3(H_2O)\right]Cl_3 + AgNO_3 \rightarrow 3AgCl\downarrow$

White ppt.

11. For a process $\Delta H_{fusion} = 2.41.Cal \, mol^{-1}$ and $\Delta H_{vaporisation} = 98.6k.Cal \, mol^{-1}$. Then $\Delta H_{Sub \, lim \, ation} \left(on \, K cal \, mol^{-1} \right)$:

Ans $101K.Calmol^{-1}$

Sol. $\Delta H_{Sublimation} = \Delta H_{vap} + \Delta H_{fusion}$ = 98.6 + 2.4

 $=101 K.Cal mol^{-1}$

12. Which of the following statement is correct:

- 1) H-H bond strength is equal to D-D bond strength
- 2) H H bond strength is half of D D bond strength
- 3) H-H bond strength is double the D-D bond strength
- 4) H H bond strength is less than D D bond strength

Ans:

4

- Sol: H-H bond denunciation energy 435 KJ/mol D-D bond denunciation energy 450 KJ/mol
- 13. Which of the following about micelle formation is correct for sodium stearate $\begin{bmatrix} C_{14}H_5COONa^+ \end{bmatrix}$

1) Micelles formed are spherical with hydrocarbon part towards the centre of sphere

- 2) Micelles formed are spherical with hydrocarbon part lying outside
- 3) Micelles formed are Non spherical with hydrocarbon part towards the centre of sphere
- 4) Micelles formed are Non-spherical with hydrocarbon part lying outside

14. From the graphs given below. Select the correct statements.

Ans: 10

19. Given structure is

1) Buna-N2) Bakelite3) Novolac4) Styrene

Ans: 3

Sol: Novolac is linear polymer.

20.

22. Assertion: Primary aromatic amine can't be prepared by gabrial-thalamide method.

Reason: Aryl halide cannot be undergo nucleophilic substitution reaction.

1) Assertion-1 is True, Reason-2 is True; Reason-2 is a correct explanation for Assertion-1

- 2) Assertion-1 is True, Reason-2 is True; Reason-2 is NOT a correct explanation for Assertion-1.
- 3) Assertion-1 is True, Reason-2 is False.
- 4) Assertion-1 is False, Reason-2 is True.

Ans: 1

23. Which of the following react with NaHCO₃ and evolved CO₂ gas.

Ans: 1

24.

