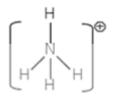
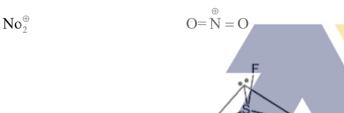
22-07-2021 Jee-Main (SHIFT-2) PAPER-1 CHEMISTRY-Memory Based

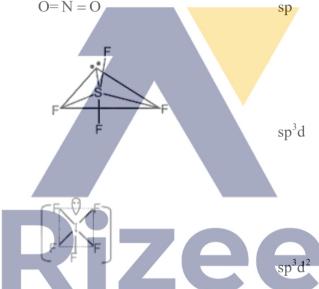

- 1. Find total number of electrons in p orbitals of vanadium (Z = 23)
- Ans: (12)
- Sol: $23V=1s^22s^22p^63s^23p^63d^34s^2$
- 2. Identify the correct sequence of hybridization of following species NH₄[⊕], NO₂[⊕], SF₄, IF₅
 - (1) sp^3, sp, sp^3d, sp^3d^2

 $(2) \operatorname{sp,sp}^2, \operatorname{sp}^3, \operatorname{sp}^3 d$

(3) sp³, sp, sp³d, sp³d


(4) $sp^3, sp^2, sp^3d, sp^3d^2$

Ans: (1)


Sol: NH_4^{\oplus}

 sp^3

 SF_4

 IF_5

- 3. Identify the incorrect statement regarding Mendeleev.
 - (1) He is the writer of chemistry book. i.e., 'principles of chemistry'
 - (2) Mendeleev developed accurate barometer.
 - (3) Atomic number 101 element named after Mendeleev
 - (4) Mendeleev developed accurate barometer.
- Ans: (2)

Sol:

- 4. Identify the correct set which is paramagnetic and coloured.
 - (1) Cu^{2+} , Sc^+ , Cr^{3+}

(2) Mn^{7+} , Cr^{3+} , Hg^{2+}

(3) Cu^+, Sc^{3+}, Co^+

(4) Mn^+, Cu^+, Cr^{3+}

Ans: (1)

Sol: Ion

No. of unpaired e^-

 Cu^{2+}

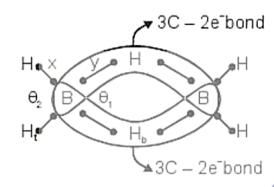
1

This set is "paramagnetic & coloured"

- 5. Identify the correct statement regarding diborane (B_2H_6)
 - (1) Hybridisation of boron is sp²
- (2) It contain one 3 center -2 electron bond.

2

3


(3) It is planer molecule

 Cr^{3+}

(4) NaBH₄ on oxidation with I₂ give B₂H₆

Ans: 4

Sol:
$$2NaBH_4I_2 \xrightarrow{ether} B_2H_6 + 2NaI + H_2 \uparrow$$

6. K_P for the reaction $N_2O_4(g) \square 2NO_2(g)$ at 288 k is 47.9, then value of K_C is-

[Report your answer to nearest integer]

[Given R=0.083 bar lit/mole K]

Ans: 2

Sol: $K_P = K_C (RT)^{\Delta n_g}$

 $47.9 = K_C (0.083 \times 288)^1$

 $K_{C} = 2$

7. How many total number of unpaired electrons are present in $\left[Co(NH_3)_6\right]Cl_2$ and $\left[Co(NH_3)_6\right]Cl_3$

Ans: 1

Sol: Complex

- (i) $\left[Co(NH_3)_6\right]Cl_2 \Rightarrow Co^{2+} = 3d^7$ unpaired electron=1
- (ii) $\left[Co(NH_3)_6\right]Cl_3 \rightarrow Co^{3+} = 3d^6$ unpaired electron=0

Total unpaired electrons=1

- 8. Isotopes of hydrogen which emits low energy β^- particle with half life greater than 12 year is:
 - (1) Tritium and Deuterium

(2) Deuterium

(3) Tritium

(4) Protium

Ans:

Sol: Only tritium is radioactive and emits low energy β particles $(t_{1/2}, 12.33 years)$

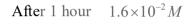
9. The concentration of glucose $(C_6H_{12}O_6)$ in blood is 0.72 gram/lit, the molarity of glucose is $[x] \times 10^{-3} M$, then value of x is

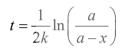
Sol:

- 10. 0.05 M solution of which compound have lowest freezing point
 - (1) K_2SO_4
- (2) KI
- (3) $C_6H_{12}O_6$ (4) $Al_4(SO_4)_3$

Ans:

Sol:
$$\Delta T_f = iK_f m$$


Greater the i value lower will be freezing point


 N_2O_5 dissociate according to 1^{st} order kinetic as $2N_2O_{5(g)} \rightarrow 4NO_{2(g)} + O_{2(g)}$. Kinetics initial concentration 11. of N_2O_5 is $2.4\times10^{-2}M$ and concentration of N_2O_5 after 1 hour is $1.6\times10^{-2}M$, then the rate constant k in \min^{-1} for this dissociation is $[x] \times 10^{-5} \min^{-1}$, then x is.

346 Ans:

Sol:
$$2N_2O_5(g) \to 4NO_2(g) + O_2(g)$$

 $2.4 \times 10^{-2} M$ Initial

$$k = \frac{2.303}{2 \times 60} \log \left(\frac{2.4 \times 10^{-2}}{1.6 \times 10^{-2}} \right)$$

$$k = \frac{2.303}{2 \times 60} \log \left(\frac{3}{2}\right)$$

$$= \frac{2.303}{2 \times 60} \times \left[0.48 - 0.30\right]$$

= 0.00346

$$=346\times10^{-5} \text{ min}^{-1}$$

- 12. Oxygen is maximum soluble in
 - (1) Water at 4° C
- (2) Water at 80° C
- (3) Polluted water
- (4) Boiling water

(1) Ans:

Sol: Solubility of oxygen is increase with decrease in temperature.

13. Using the following cell reaction find cell

(i)
$$Cu(S) \to Cu^{2+}(aq) + 2e^{-}E^{0} = -0.34V$$

(ii)
$$Ag^{+}(aq) + e^{-} \rightarrow Ag$$
 $E^{0} = 0.80V$

[Given log2.5=0.4]
$$\frac{2.303RT}{F} = 0.06$$

Report your answer as $[E_{cell}] \times 10^{-3}$

Ans:

Sol:
$$E_{cell}^0 = (E_{RP}^*)_C - (E_{RP}^*)_A$$

$$= 0.80 - 0.34 = 0.46V$$

$$E_{cell} = E_{cell}^{0} - \frac{0.06}{2} \log \frac{\left[Cu^{2+}\right]}{\left[Ag^{+}\right]^{2}} = 0.46 - \frac{0.06}{2} \log \left\{\frac{0.5}{\left(0.45\right)^{2}}\right\}$$

$$=0.46 - \frac{0.06}{2} \log 2.5 = 0.46 - \frac{0.06}{2} \times 2.5$$

$$= 0.46 - 0.012 = 0.448 = 448 \times 10^{-3}$$

14. Match column-I with column-II

Column-I

Column-II

(a) Li

(i) Soluble in organic compound

(b) Na

(ii) Outer electronic configuration is $6s^2$

(c) Ca

- (iv) From strong monobasic compound
- (1) a-i,b-iv,c-iii,d-ii
- (2) a-i,b-ii,c-iii,d-iv
- (3) a-iii,b-iv,c-i,d-ii
- (4) a-i,b-iv,c-iii,d-ii

Ans:

Sol:

15. Find the sum of magnetic moment (spin only) of following ion Co^+ , Zn^{2+} , V^{5+}

[Report your answer to nearest integer]

Ans:

Sol:

$$_{27}C^{+} = [_{18}Ar]3d^{7}4s^{1}$$

Unpaired electron=4

 $_{30}Zn^{2+} = [Ar]3d^{10}$ unpaired electron=0

$$_{23}V^{5+} = [_{18}Ar]3d^0$$
 unpaired electron=0

So
$$\mu = \sqrt{n(n+2)}BM$$

$$=\sqrt{24}BM$$

$$=4.89BM$$

16. Which of the following have strong reducing power

- (1) PH_{3}
- (2) BiH_3
- $(3) AsH_3$
- (4) SbH_3

Ans: 2

Sol: NH_3

 PH_3

 AsH_3

 SbH_3

 $SDII_3$

 BiH_3

As we move down the group reducing power is increase.

- 17. When AgNO₃ solution is added to KI, the sol produced is
 - (1) KI/NO_3^-
- (2) AgI/Ag^+
- (3) AgI/I^{-}
- $(4) AgNO_3 / NO_3^-$

Ans:

Sol:
$$AgNO_3 + KI \rightarrow AgI | Ag^+$$

18. How much heat is released on (in kJ) of 10 gram graphite

[Given
$$\Delta H_{combustion}(graphite) = -2.48kJ/mol$$
]

[Report your answer to nearest integer]

Ans: 2

 $C(graphite) + O_2 \rightarrow CO_2(g)\Delta H = -2.48kJ$ mole $\frac{10}{12}$ mole Sol:

Total heat released = $2.48 \times \frac{10}{12} = 1.90 kJ$

10 gram Benzene (GMM=78) on methylation give 9.2 gram of Toluene (GMM=92), then percentage yield 19. of process is:

Ans:

Sol:
$$C_6H_6 \xrightarrow{Methylation} C_6H_5CH_3$$

 $\frac{10}{78}mole$ $\frac{10}{78}mole$

$$(W_{theoritical}) = \frac{10}{78} \times 92$$

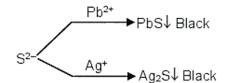
% yield=
$$\frac{W_{actual}}{W_{theoritical}} \times 100$$

$$= \left[\frac{9.2}{10 \times 92} \times 78 \right] \times 100 = 7.8\%$$

- The total number of isomers of square planar complex $\left[\mathit{MFCl}\left(\mathit{SCN}\right)\left(\mathit{NO}_{2}\right)\right]$ is 20.
 - (1) 12
- (2)6
- (3)8
- (4) 4

Ans: **(1)**

- Sol: SCN / NO_2
- -3 arrangements
- NCS / NO_2
- -3 arrangements
- SCN/ONO
- -3 arrangements
- NCS/ONO
- -3 arrangements


Total number of isomers=12

- Consider sulphide ion $[S^{2-}ion]$ as a soft base. Which of the following ion will form sulphide 21.

 - (1) Pb^{2+} , Ag^{+} (2) Ag^{+} , Mg^{2+} (3) Al^{3+} , Ag^{+} (4) Al^{3+} , Mg^{2+}

3 Ans:

Sol:

In the following sequence of reactions identify A & B respectively: 22.

(1) H_3PO_2 $CH_3 - CH_2 - Cl$ (2) H_3PO_2 $CH_3 - CH_2 - OH$

(3) $CH_3 - CH_2 - OH$ H_3PO_2 (4) $CH_3 - CH_2 - Cl$ H_3PO_2

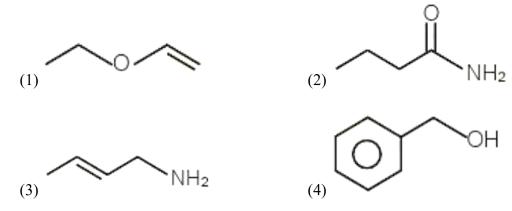
Ans:

Sol:

23. A(C₆H₆O) gives dark green colouration with FeCl₃. A on reaction with CHCl₃, KOH gives B. B can also be prepared from C by PCC. The correct option for A,B and C is:

(1)

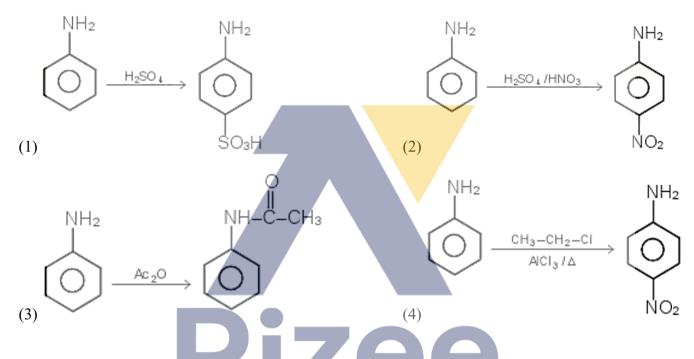
(2)


(3)

(4)

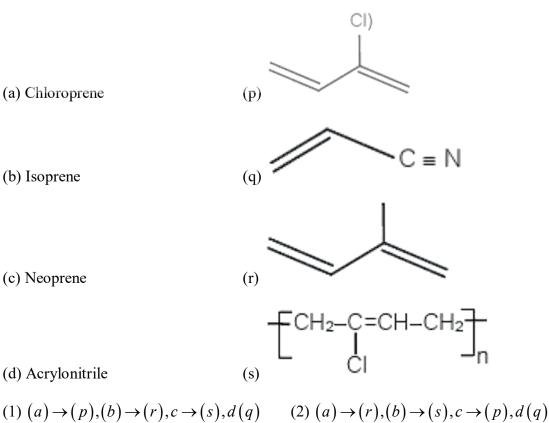
(3) Ans:

Sol:


24. Which of the following does not show resonance.

Ans: (3)

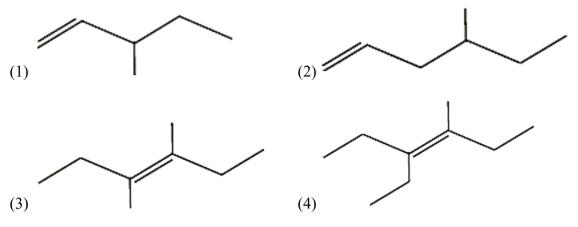
has no conjugation between π -bond and lone-pair hence there will be no Sol: resonance in this compound.


25. Which of the following reaction is not possible:

Ans:

Friedel-craft alkylation is not passible in aniline due to formation of highly deactived cationic salt. Sol:

26. Match the following:



 $(1) (a) \rightarrow (p), (b) \rightarrow (r), c \rightarrow (s), d(q)$

$$(3) (a) \to (r), (b) \to (p), c \to (q), d(s) \qquad (4) (a) \to (q), (b) \to (r), c \to (p), d(s)$$

Sol: NCERT

27. Which of the following does not show stereoisomerism

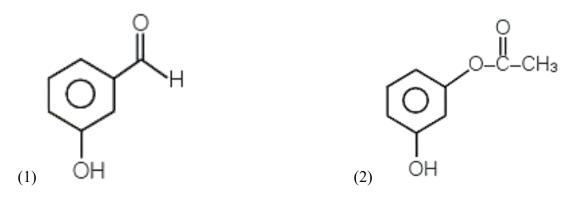
Ans: (4)

Sol:

28. Total acyclic number of structures including geometrical of pentene is

Ans: 6

Sol:


$$C-C-C-C=C$$
 (1)
 $C-C-C=C-C$ (2)
 $C-C-C=C$ (1)
 $C-C-C=C$ (1)
 $C-C-C=C$ (1)
 $C-C-C=C$ (1)

- 29. Thiamin & pyridoxine vitamin are respectively:
 - (1) $B_1 \& B_6$
- (2) *B*, & *E*
- (3) $B_1 \& E$
- (4) $E_1 \& B_6$

Ans: 1

Sol: NCERT

30. Which of the following give tertiary alcohol with excess Grignard reagent (CH_3MgBr)

Ans: 2

Sol: