1. 4 grams mixture NaOH and Na_2CO_3 is Equimolar, if it contain x gram of NaOH and Y gram of Na_2CO_3 then value of 'x' is

Ans: 1

Sol: Given (i) x + y = 4

(ii)
$$\frac{x}{4} = \frac{y}{106} [\text{Equimolar}]$$

$$Y = \left[\frac{106}{40}\right] x$$

So $x + \frac{106}{40}x = 4$ x + 2.065x = 4

3.65x = 4

x = 1.096 gram

2. What is the correct relation between degree of freedom and γ

3. In a octahedral complex of Fe^{2+} in high spin state what is the Magnetic moment (Spin only)

(1) 4.89 BM	(2) 1.73 BM	(3) 0 BM	(4) 3.87 BM
-------------	-------------	----------	-------------

Ans:

1

Sol: $26^{Fe^{2+}} = 3d^6 4s^0 \Longrightarrow t_{2g}^{2.1.1}, e_g^{1.1}$

Unpaired e - [n = 4]

$$\mu = \sqrt{n(n+2)} = \sqrt{24}$$
$$= 4.89 \text{ BM}$$

4. An ideal gas change state from A to state B . Find work done by gas (in KJ) using following P-V diagram

Ans: (2.8)

Sol: As $P_1V_1=P_2V_2$ So reversible isothermal process

W=-nRT
$$\ln\left(\frac{V_2}{V_1}\right) = -P_1V_1\ln\left(\frac{V_2}{V_1}\right) = -200 \times 2\ln\left(\frac{4}{2}\right)$$

= -2.303×400 log 2= -2.303×400×0.3
= -276.36 atm × lit=-28002J=-2.8KJ

Work done by gas =2.8 KJ

5. An ideal solution is prepared by mixing of A ($P_A^0 = 90 \text{ torr}$) and B ($P_B^0 = 15 \text{ torr}$) in which mole fraction of A in liquid phase is 0.6, Then mole fraction of B in vapour phase is $[x] \times 10^{-1}$. Then Volume of x is

Sol:
$$x_A + x_B = 1 \begin{cases} x_A = 0.6 \\ x_B = 0.4 \end{cases}$$

P Total= $P_B^0 x_B$
= [90]0.6+[15]0.4=54+6=60 torr
THE PERFECT GUIDE
 $P_B = P_B^0 x_B = [P_{TOTAL}]Y_B$
 $Y_B = \frac{15 \times 0.4}{60} = 0.1$
 1×10^{-1}

6. What is the difference in number of unpaired electron when NiCl₂ change into $\left[Ni(CN)_{6}\right]^{2-1}$

$$NiCl_2 \Rightarrow Ni^{4+} \Rightarrow 3d^6 \Rightarrow t_{2g}^{2.2.2}, eg^{0.0}$$

Unpaired electron =0

(1) Both reaction are roasting

(2) Both reaction are calcination

(3) 1^{st} reaction is calcination and 2^{nd} reaction is roasting

(4) 1^{st} reaction is roasting and 2^{nd} reaction is calcination.

Sol:

(i) Calcination
$$\Rightarrow$$
CaCO_{3(s)} $\xrightarrow{\Delta}$ CaO_(s) + CO_{2(g)}
(ii) Roasting \Rightarrow ZnS $\xrightarrow{\Delta}$ ZnO_(s) + SO_{2(g)}

- 11. For a reaction ΔG^0 =-51.4 KJ/mol and ΔH^0 =49.4 KJ/mol at 300K, then value of ΔS^0 in J/K is
- Ans: (336)

Sol: $\Delta G^0 = \Delta H^0 - T \Delta S^0$

 $-51.4 = 49.4 - T\Delta S^0$

$$\Delta \mathbf{S}^0 = \left[\frac{49.4 + 51.4}{300}\right]$$

=0.336KJ/K=336J/K

12. In 13th group from element with electronic configuration $4s^2 4p^1$ if we move diagonally then the electronic configuration of 5th period element is :

	(1) $5s^2 5p^3$	(2) $4s^2 4p^1$	(3) $4s^2$	4 <i>p</i> ²	(4) $5s^25p^2$
Ans:	4				
Sol:					
			13 th 14	1 th 15 th	
	2 nd period	2s ² 2p ¹	в с		
	3 rd period	3s ² 3p ¹	Ae Si	P	
	4 th period	4s24p1	GaR F ⊑G	eT GASI	DE
	5 th period	5s ² 5p ¹	In S	n Sb	
	That elem	nent is ∞Sn ⇒	[Kr] 4d ¹⁰ 5	s² 5p²	

13. Identify the correct hybridization of NO_2^- , NO_2^{\oplus} , NH_4^{\oplus}

(1) sp^2 , sp, sp^3 (2) sp, sp^2 , sp^3 (3) sp^3 , sp^2 , sp, (4) sp^2 , sp^3 , sp,

Ans: 1

Sol:

(1) $H_2So_4 HNO_3$ (2) $HNO_3 H_2SO_4$ (3 $HNO_3 HNO_3$ (4) $H_2SO_4 H_2SO_4$

Ans: 1

Sol:

18.

19. Which gas retards photosynthesis?

> (1) CO (2) CFC (3) CO₂ (4) NO_{2}

Sol: Reason: NO_2 damage the leaves of plants and retard the photosynthesis.

22. Rate of hydrolysis of given compounds ester, acid chloride, acid anhydride is :

$$\begin{array}{ccc}
 & O \\
 & R - C - OR \\
 & (A)
\end{array} \qquad \begin{array}{c}
 & O \\
 & R - C - CI \\
 & (B)
\end{array} \qquad \begin{array}{c}
 & O \\
 & R - C - O - C - R \\
 & (C)
\end{array}$$

$$(1) B > A > C \qquad (2) B > C > A \qquad (3) A > B > C \qquad (4) C > A > B$$

Ans: 2

- Sol: Rate of hydrolysis is directly proportional to δ positive charged present on carbon of C=O group. Rate of hydrolysis – Acid chloride > Acid anhydride > ester
- 23. Which of following compounds are metamers?

Ans:

Sol: Metamers are compounds which have different alkyl groups present along both side of polyvalent functional group.

Ans:

