Mathematics

MCQ TYPE

Let E : $y^2 = 8x$. Two tangents PQ and PQ' are drawn from point P(-2, 4) to curve then which of 1. the following is/are true (F be focus of parabola)

(D) PF = $5\sqrt{2}$

(A) $\Delta PQQ'$ is right angle Δ (B) ΔPFQ is right angle Δ

(C) Line joining QQ' passes through F

Ans. (B,C)

Sol. Point P(-2, 4) lies on directrix

$$PF = 4\sqrt{2}$$

By property option B,C are true

2.
$$f(1) = 1$$

$$\int_{0}^{\frac{\pi}{3}} f(x) dx = 0$$

(A) $f(x) - 3 \sin 3x = \frac{-6}{\pi}$ has solution in $\left[0, \frac{\pi}{3}\right]$ (B) $f(x)-3 \cos 3x = 0$ has solution in $\left[0, \frac{\pi}{3}\right]$

(C)
$$\lim_{x \to 0} \frac{x \int_{0}^{x} f(t) dt}{1 - e^{x^{2}}} = -1$$

(D)
$$\lim_{x \to 0} \frac{x \int_{0}^{x} f(t) dt}{1 - \cos(3x)} = -1$$

(**B**,**C**) Ans.

Sol. Option (A)

$$g(x) = \int_{0}^{x} \left(f(x) - 3\sin 3x + \frac{6}{\pi} \right) dx$$
$$g(0) = 0, \ g\left(\frac{\pi}{3}\right) = -2 + 2 = 0$$

Option(B)

$$g(x) = \int_{0}^{x} (f(x) - 3\cos 3x) dx$$

$$g(0)=0, g\left(\frac{\pi}{3}\right)=0$$

Option(C)

$$\lim_{x \to 0} \frac{x \int_{0}^{x} f(t) dt}{\left(\frac{\left(1 - e^{x^{2}}\right)}{x^{2}}\right) x^{2}} = \lim_{x \to 0} -\frac{\int_{0}^{x} f(t) dt}{x} = -f(0) = -1$$

Option (D)

$$\lim_{x \to 0} \frac{x \int_{0}^{x} f(t) dt}{\left(\frac{(1 - \cos 3x)}{9x^{2}}\right) 9x^{2}} = \lim_{x \to 0} \frac{2 \int_{0}^{x} f(t) dt}{9x} = \frac{+2}{9}$$

3. Given
$$\overrightarrow{OA} = 2\hat{i} + 2\hat{j} + \hat{k}$$

 $\overrightarrow{OB} = \hat{i} - 2\hat{j} + 2\hat{k}$
and $\overrightarrow{OC} = \frac{1}{2}(\overrightarrow{OB} - \lambda\overrightarrow{OA})$
if $|\overrightarrow{OB} \times \overrightarrow{OC}| = \frac{9}{2}$ Where A,B,C are non collinear points then
(A) area of $\triangle ABC = \frac{9}{2}$ (B) Projection of \overrightarrow{OC} on \overrightarrow{OA} is $\frac{3}{2}$
(C) area of $\triangle OAB = \frac{9}{2}$ (D) Projection of \overrightarrow{OC} on \overrightarrow{OA} is $\frac{1}{2}$
Ans (A B C)

Alls. (A,B,C)
Sol.
$$|\overline{OB} \times \overline{OC}| = \frac{9}{2}$$

 $\Rightarrow |\overline{OB} \times (\overline{OB} - \lambda \overline{OA})| = 9$
 $\Rightarrow |\lambda(\overline{OB} \times \overline{OA})| = 9$
 $\Rightarrow |\lambda| = 1 \Rightarrow \lambda \pm 1$
For $\lambda = -1$, point A.B.C are collinear. Hence

For $\lambda = -1$, point A,B,C are collinear. Hence, $\lambda = 1$

$$\Rightarrow \overrightarrow{OC} = \frac{1}{2} \left(\overrightarrow{OB} - \overrightarrow{OA} \right)$$

 $\Rightarrow \overrightarrow{OC} = \frac{1}{2} \left(-\hat{i} - 4\hat{j} + \hat{k} \right)$ $\Rightarrow \overline{AB} = -\hat{i} - 4\hat{j} + \hat{k}$ and $\overrightarrow{AC} = \frac{-5}{2}\hat{i} - 4\hat{j} - \frac{1}{2}\hat{k}$ area of $(\Delta OAB) = \frac{1}{2} |\overline{OA} \times \overline{OB}| = \frac{9}{2}$ area of $(\Delta ABC) = \frac{1}{2} |\overline{AB} \times \overline{AC}| = \frac{9}{2}$ Projection of OC on OA = $\left| \frac{\overrightarrow{OC.OA}}{\overrightarrow{OA}} \right| = \frac{3}{2}$ S_1 : i, j, k such that i, j, k $\in \{1, 2, ---10\}$ 4. S_2 : i, j, k such that $1 \le i < j+2 \le 10$. & i, $j \in \{1, 2, ---10\}$ $S_3 : i, j, k, \ell \text{ such that } 1 \le i < j < k < \ell \le 10 \text{ . \& } i, j, k, \ell \in \! \{1, 2, - - - 10\}$ S_4 : i, j, k, ℓ such that all are distinct and i, j, k, $\ell \in \{1, 2, ---10\}$ The number of element in S_i is n_i (B) $\frac{n_4}{12} = 420$ (C) $n_2 = 28$ (A) $n_3 = 220$ (D) $n_1 = 10^3$ (B,C,D)Ans. $S_1 : 10^3$ Sol. S_2 : i i 1 7 choice 2 6 choice ÷ 7 $S_2 = 1 + 2 + \dots = 7 = \frac{7(7+1)}{2} = 28$ $S_3 = {}^{10}C_4 = 210$ $S_4 = {}^{10}C_4 \times 4! = 420$

- 5. Let $\frac{dy}{dx} + xy = xe^{\beta x}$ passes through (1,1), then
 - (A) $ye^{-x} = \frac{x^2 1}{2} + \frac{1}{e}$ is a solution to this equation.
 - (B) $ye^{-x} = \frac{x^2+1}{2} + \frac{1}{e} 1$ is a solution to this equation.
 - (C) $ye = \frac{e^{2x}}{4}(2x-1)+e-\frac{e^2}{4}$ is a solution to this equation.
 - (D) $ye^{x} = \frac{e^{2x}}{4}(2x+1)+e$ is a solution to this equation.

Ans. (A, C)

Sol. $\frac{dy}{dx} + \alpha y = xe^{\beta x}$ I.F = $e^{\alpha x}$ So $ye^{\alpha x} = \int xe^{(\alpha+\beta)x} dx$ If $\alpha + \beta = 0$ $ye^{\alpha x} = \frac{x^2}{2} + C$ passing through (1,1), So $ye^{\alpha x} = \frac{x^2}{2} - \frac{1}{2} + e^{\alpha}$.
If $\alpha + \beta \neq 0$ $ye^{\alpha x} = \frac{xe^{(\alpha+\beta)x}}{\alpha+\beta} - \int \frac{e^{(\alpha+\beta)x} dx}{\alpha+\beta}$ $\Rightarrow ye^{\alpha x} = \frac{xe^{(\alpha+\beta)x}}{\alpha+\beta} - \frac{e^{(\alpha+\beta)x} dx}{(\alpha+\beta)^2} + C$ $\Rightarrow ye^{\alpha x} = \frac{e^{(\alpha+\beta)x}}{(\alpha+\beta)^2} \{(\alpha+\beta)x - 1\} + e^{\alpha} - \frac{e^{\alpha+\beta}}{(\alpha+\beta)^2}(\alpha+\beta-1)$

Register Now

刁 回 🗗 🌈 🖊 Rizeeofficial

NUMERICAL

- 6. A number is chosen random from set {1,2,3,....,2000}. Let p be the probability that chosen number is multiple of 3 or 7. then 500 p is equal to _____
- Ans. (214)
- Number multiple of 3 are $\left| \frac{2000}{3} \right| = 666$ Sol. Number multiple of 7 are $\left\lceil \frac{2000}{7} \right\rceil = 285$ Number multiple of 21 are $\left\lceil \frac{2000}{21} \right\rceil = 95$ $p = \frac{666 + 285 - 95}{2000} = \frac{856}{2000}$

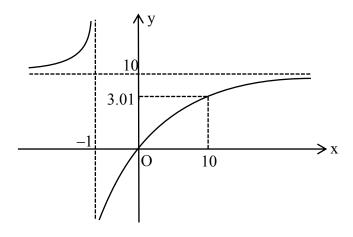
$$500 \text{ p} = 214$$

7. Let I =
$$\int_{0}^{10} \left[\sqrt{\frac{10x}{x+1}} \right] dx$$
, then find the value of 9I.
Ans. (182)
Sol. $y = \frac{10x}{x+1} = 10 - \frac{10}{(x+1)}$

Ans. (182)

 $y = \frac{10x}{x+1} = 10 - \frac{10}{(x+1)}$ Sol. dv 10

$$\frac{dy}{dx} = \frac{10}{(x+1)^2}$$



$$\frac{10x}{x\!+\!1}\!=\!1\!\Longrightarrow x=\frac{1}{9}$$

$$\frac{10x}{x+1} = 4 \Rightarrow x = \frac{2}{3}$$

$$\frac{10x}{x+1} = 9 \Rightarrow x = 9$$

$$\int_{0}^{10} \left[\sqrt{\frac{10x}{x+1}} \right] dx = \int_{0}^{1/9} 0 dx + \int_{1/9}^{2/3} dx + \int_{2/3}^{9} 2 dx + \int_{9}^{10} 3 dx$$

$$= \left(\frac{2}{3} - \frac{1}{9}\right) + 2\left(9 - \frac{2}{3}\right) + 3$$

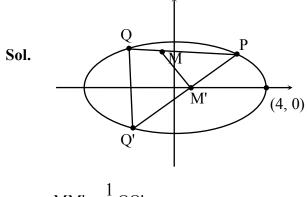
$$= \frac{5}{9} + \frac{50}{3} + 3$$

$$= \frac{182}{9}$$

$$\therefore 9I = 182$$

8. Let E be the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. For any 3 distinct points P, Q, Q' on E, Let M(P, Q) be mid point of line segment joining P and Q and M'(P, Q') be mid point of line segment joining P and Q'. then maximum possible value of the distance between M(P, Q) and M'(P, Q') as P, Q and Q' vary on E is _____

Ans. (4)



$$MM' = \frac{1}{2}QQ'$$

Maximum distance between QQ' is 8

Hence, maximum distance between M and M' is 4

ব 回 🗗 🚺 / Rizeeofficial

Paragraph for Question Nos. 9 to 10

 $f_1: (0, \infty) \to IR, f_2: (0, \infty) \to IR \text{ is defined by } f_1(x) = \int_0^x \prod_{i=1}^{21} (t-i)^i dt, x > 0,$

 $f_2 = 98(x - 1)^{50} - 600(x - 1)^{49} + 2450$, x > 0 where , for any positive number n in R, numbers a_1, a_2, \dots, a_n , $\prod_{i=1}^n a_i$ denotes the product of a_1, a_2, \dots, a_n . Let m_i and n_i respectively denote number of points of local minima and number of points of local maxima of function f_i , i = 1, 2 in the interval $(0, \infty)$

9. Value of $2m_1 + 3n_1 + m_1n_1$ is

- 10. Value of $6m_2 + 4n_2 + 8m_2n_2$ is
- Ans. (6)

Sol. (2 to 3)

At all odd integers from 1 to 21 f(x) will have an extrema with 1,5,9, 13, 17,21 being points of minima & 3, 7, 11, 15, 19 being points of maxima

So $m_1 = 6 \& n_1 = 5$ Hence $2m_1 + 3n_1 + m_1n_1 = 57$ (b) $f_2'(x) = 98 \times 50 (x-1)^{49} - 600 \times 49 (x-1)^{48}$ $= 4900 (x-1)^{48} ((x-1) - 6$ $= 4900 (x-1)^{48} (x-7)$ So extrema is at x = 7 only . which is minima $m_2 = 1, n_2 = 0$ Hence $6m_2 + 4n_2 + 8m_2n_2 = 6$

Paragraph for Question Nos. 11 to 12

Let $g_i : \left\lceil \frac{\pi}{8}, \frac{3\pi}{8} \right\rceil \to R \quad \forall i = 1, 2 \text{ and } f : \left| \frac{\pi}{8}, \frac{3\pi}{8} \right| \to R$ be function such that $g_1(x) = 1$, $g_2(x) = |4x - \pi|$ and $f(x) = \sin^2 x \quad \forall x \in \left[\frac{\pi}{8}, \frac{3\pi}{8}\right].$ If $S_i = \int_{\pi/8}^{3\pi/8} f(x)g_i(x)dx$, for i = 1, 2 then The value of $\frac{48S_2}{\pi^2}$ is (1.5)Ans. The value of $\frac{16S_1}{\pi}$ is Ans. (2) Sol. (4 to 5) $S_{1} = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} f(x)g_{1}(x)$ $\Rightarrow S_{1} = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^{2}xdx$ IZE $\Rightarrow S_1 = \int_{\underline{\pi}}^{\underline{3\pi}} \sin^2 \left(\frac{\pi}{8} + \frac{3\pi}{8} - x \right) dx$ $= \int_{\pi}^{\frac{3\pi}{8}} \cos^2 x \, dx$ (2)add (1) & (2) we get $2S_{1} = \int_{\pi}^{\frac{3\pi}{8}} 1 \, dx = \frac{2\pi}{8} \Longrightarrow S_{1} = \frac{\pi}{8}$ $\Rightarrow \frac{16S_1}{\pi} = 2$

11.

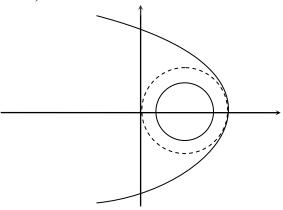
12.

Now
$$S_2 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 |4x - \pi| dx$$
 (3)
 $\Rightarrow S_2 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \cos^2 |4(\frac{\pi}{2} - x)| dx$
 $\Rightarrow S_2 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \cos^2 |4x - \pi| dx$ (4)
add (3) & (4) we get
 $2S_2 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} |4x - \pi| dx = 2 \times \frac{1}{2} \times \frac{\pi}{8} \times \frac{\pi}{2} = \frac{\pi^2}{16}$
 $\frac{48S_2}{\pi^2} = \frac{3}{2} = 1.5$

Paragraph for Question Nos. 13 to 14

Consider region $R = \{(x, y) \in R \times R : x \ge 0 \text{ and } y^2 \le 4 - x\}$. Let F be the family of all circles that are connected in R and have centers on the x-axis. Let C be the circle that has largest radius among the circles in F. Let (α, β) be a point where the circle C meets the curve $y^2 = 4 - x$ then

- **13.** Radius of circle C
- Ans. (4)
- 14. α is equal to
- Ans. (0)
- Sol. (6 to 7)



Note that largest circle will be touching the parabola and all point on the circle should have x-ordinates ≥ 0

Now normal to this curve at $P(4 - t^2, -2t)$ meets x axis at $Q(2 - t^2, 0)$

If $t^2 > 0$, then the circle cannot touch the parabola, else some part of it will have points whose x-coordinates are less than O

ব 🔟 🗗 🚺 / Rizeeofficial

So for maximum radius t = 0, radius = 2 and the circle touches at (0, 0)

Paragraph for Question Nos. 15 to 16

$$\begin{split} x^{2} + y^{2} &= r^{2} \\ a_{k} &= \frac{1}{2^{k-l}} \\ S_{n} &= \sum_{k=l}^{n} a_{k} \text{ , } S_{0} &= 1 \end{split}$$

Let C_n be a circle whose contre is $(S_{n-1}, 0)$ and radius is a_n . Let D_n be a circle whose contre is (S_{n-1}, S_{n-1}) and radius is a_n .

15. If
$$r = \left(\frac{2^{199}-1}{2^{198}}\right)\sqrt{2}$$
, then number of circles D_n which completely be inside this circle

Sol.
$$\sqrt{2} S_{n-1} + a_n < \left(\frac{2^{199}-1}{2^{198}}\right)\sqrt{2}$$

 $\sqrt{2}\left(2-\frac{1}{2^{n-2}}\right) + \frac{1}{2^{n-1}} < \left(\frac{2^{199}-1}{2^{198}}\right)\sqrt{2}$
 $2\sqrt{2} - \frac{1}{2^{n-2}}\sqrt{2} + \frac{1}{2^{n-1}} < 2\sqrt{2} - \frac{\sqrt{2}}{2^{198}}$
 $\frac{1}{2^{n-2}}\left(\frac{1}{2}-\sqrt{2}\right) < -\frac{\sqrt{2}}{2^{198}}$
 $\frac{1}{2^{n-2}}\left(\frac{2\sqrt{2}-1}{2}\right) > \frac{\sqrt{2}}{2^{198}}$
 $2^{n-2} < \left(2-\frac{1}{\sqrt{2}}\right) 2^{197}$
 $n - 2 \le 197$
 $n \le 199$
number of circle = 199

16. If $r = \frac{1025}{513}$, find number of circles C_n which completely be inside this circle Ans. (10)

Sol. $S_{n-1} + a_n < \frac{1025}{513}$ $\Rightarrow a_1 + a_2 + \dots + a_n < \frac{1025}{513}$ $\Rightarrow 1 - \left(\frac{1}{2}\right)^n < \frac{1025}{1026}$ $\Rightarrow 2n < 1026 \Rightarrow n \le 10$ hence number of circles = 10

Paragraph for Question Nos. 17 to 18

If $\Psi_1 : [0, \infty) \to \mathbb{R}$ $\Psi_2: [0, \infty) \to \mathbb{R}$ $f:[0,\infty)\to R$ $g:[0,\infty)\to R$ If f(0) = g(0) = 0 & $\Psi_1(x) = e^{-x} + x$ $\Psi_2(x) = x^2 - 2x - 2e^{-x} + 2$ $f(x) = \int_{0}^{x} (|t| - t^{2}) e^{-t^{2}} dt, \ x > 0$ $g(x) = \int_{-\infty}^{x^2} \sqrt{t} e^{-t} dt$, then 17. There exist a β (A) $\beta \in (0, x)$ such that $\Psi_2(x) = 2x (\Psi_1(\beta) - 1)$ (B) For every x > 1, there exist a α , $a \in (1, x)$ such that $\Psi_1(x) = 1 + \alpha x$ (C) $f(\sqrt{\ln 3}) + g(\sqrt{\ln 3}) = \frac{1}{2}$ (D) None of these Ans. **(A)** (A) $\Psi'_2(x) = 2\Psi_1(x) - 2$ Sol. from LMVT, $\frac{\Psi_2(\mathbf{x}) - \Psi_2(0)}{\mathbf{x} - \mathbf{0}} = \Psi'_2(\beta)$ for at least one $\beta \in (0, \mathbf{x})$ $\Rightarrow \Psi_2(\mathbf{x}) = 2\mathbf{x}(\Psi_1(\beta) - 1)$ (B) for $\alpha \in (1, x)$, $\Psi_1(x) - 1 - \alpha x = 0$ $\Rightarrow e^{-x} + x - 1 - \alpha x = 0$ $\Rightarrow (e^{-x} - 1) = x (\alpha - 1)$ Which is not possible because LHS < 0 & RHS > 0(C) $f(x) = 2 \int_{0}^{x} (t - t^2) e^{-t^2} dt$; x > 0 $g(x) = \int_{0}^{x^{2}} \sqrt{t} e^{-t} dt ; x > 0$ put $t = u^2$ \therefore g(x) = 2 $\int_{0}^{x} u^2 e^{-u^2} du = 2 \int_{0}^{x} t^2 e^{-t^2} dt$ now, $f(x) + g(x) = \int_{a}^{x} 2te^{-t^{2}} dt = 1 - e^{-x^{2}}$ \Rightarrow f($\sqrt{\ln 3}$)+g($\sqrt{\ln 3}$)=1 - e^{-ln3} = $\frac{2}{3}$

刁 回 🗗 🖊 Rizeeofficial

🔁 🚯 / Rizeeofficial

(O)

18. Which of the following is correct

(A)
$$\phi_1(x) < 1 \ \forall \ x \in (0, \infty)$$

(B) $\phi_2(x) < 0 \ \forall \ x \in (0, \infty)$
(C) $f(x) > 1 - e^{-x^2} - \left(\frac{2}{3}x^3 - \frac{2}{5}x^5\right), x \in \left(0, \frac{1}{2}\right)$
(D) $g(x) \le \frac{2}{3}x^3 - \frac{2}{5}x^5 + \frac{1}{7}x^7, x \in \left(0, \frac{1}{2}\right)$

Ans. (D)

Sol. (A) $e^{-x} + x < 1$ for $x \in (0, \infty)$ is incorrect LHS is increasing and unbounded function (B) $x^2 - 2x - 2e^{-x} + 2 < 1$ for $x \in (0, \infty)$ is incorrect because LHS $\rightarrow \infty$ when $x \rightarrow \infty$ (C) Now $f(x) + g(x) = 1 - e^{-x^2}$ $\Rightarrow f(x) = 1 - e^{-x^2} - g(x)$ $\Rightarrow f(x) \le 1 - e^{-x^2} - g(x)$ (D) $g(x) = \int_{0}^{x^2} \sqrt{t}e^{-t}dt$ $\Rightarrow g(x) \le \int_{0}^{x^2} \sqrt{t}e^{-t}dt$ $\Rightarrow g(x) \le \int_{0}^{x^2} \sqrt{t}(1 - t + \frac{t^2}{2}) dt \Rightarrow g(x) \le \frac{2}{3}x^3 - \frac{2}{5}x^5 + \frac{1}{7}x^7$ $g(x) \ge \int_{0}^{x^2} \sqrt{t}(1 - t) dt \Rightarrow g(x) \ge \frac{2}{3}x^3 - \frac{2}{5}x^5$