PAPER-2 CHEMISTRY

MCO

 $X + Y^{2+} \longrightarrow X^{2+} + Y$; reaction is spontaneous 1.

when X and Y are respectively:

$$Ni^{2+}/Ni = -0.24 \text{ V}$$

$$Pb^{2+}/Pb = -0.13 \text{ V}$$

$$Fe^{2+}/Fe = -0.44 \text{ V}$$

$$Cd^{2+}/Cd = -0.40 \text{ V}$$

Given:
$$[X^{2+}] = 10^{-3} M$$
,
 $[Y^{2+}] = 10^{-1} M$

- (A) Ni & Pb
- (B) Cd & Fe
- (C) Ni & Fe
- (D) Pb & Cd

Ans. (AB)

Sol.
$$E = E^{\circ} - \frac{0.06}{2} \log_{10} \frac{10^{-3}}{10^{-1}}$$

$$E = E^{\circ} + 0.06$$

(A)
$$E^{\circ} = (-0.13) - (-0.24) = 0.11$$
 \Rightarrow $E > O$

(B)
$$E^{\circ} = (-0.44) - (-0.40) = 0.04$$
 \Rightarrow $E > O$

(C)
$$E^{\circ} = (-0.44) - (-0.24) = -0.20 \implies E < O$$

(D)
$$E^{\circ} = (-0.40) - (-0.13) = -0.27 \implies E < O$$

MCQ

- 2. Which of the following is/are correct?
 - (A) $PbS + PbO \longrightarrow Pb + SO_2$
 - (B) SiO₂ is added in copper metallurgy to make copper silicate.
 - (C) In cyanide process, Zn dust is used to precipitate Au from Na[Au(CN)₂]
 - (D) In metallurgy of copper, partial roasting followed by self reduction gives blister copper.

(ACD) Ans.

- \bullet PbS + PbO \longrightarrow Pb + SO₂ Sol. (Self reduction of Pb)
 - ♦ In Cu metallurgy, SiO₂ is added to make FeSiO₃
 - ♦ $Zn + Na[Au(CN)_2] \longrightarrow Au(s) + Na_2[Zn(CN)_4]$

MCQ

Which of the following reactions form ortho-xylene? 3.

(A)
$$\xrightarrow{\text{CH}_3}$$
 Br $\xrightarrow{\text{(1) Mg/THF}}$ $\xrightarrow{\text{SOCl}_2}$ $\xrightarrow{\text{H}_2/\text{Pd-BaSO}_4}$ $\xrightarrow{\text{Zn-Hg/HCl}}$ $\xrightarrow{\text{SOCl}_2}$

(B)
$$Me$$

$$(1) NaNO2 + HCl$$

$$(2) CuCN$$

$$(3) DIBAL-H$$

$$(4) N2H4/KOH$$

(C)
$$O_3/Zn-H_2O \longrightarrow N_2H_4/KOH \longrightarrow \Delta$$

(A,B)Ans.

Sol. (A) Br (1) Mg/THF
$$(2)$$
 COOH (3) H $^{\oplus}$ COOH (3) H $^{\oplus}$ COCI (3) H $^{\oplus}$ COCI (4) Me (1) NaNO₂/HCI (4) Me (1) NaNO₂/HCI (4) Me (1) NaNO₂/HCI (4) Me (4) Me

(C)
$$O_3/Z_{n-H_2O}$$
 CHO O_2H_4/KOH CHO Δ

(D)
$$\underbrace{\frac{(1) \text{ BH}_3\text{-THF}}{(2) \text{ H}_2\text{O}_2}}_{\text{OH}} \underbrace{\frac{(3) \text{ PBr}_3}{\text{OH}}}_{\text{OH}} \underbrace{\frac{(3) \text{ PBr}_3}{\text{Can-dil/HCl}}}_{\text{In-dil/HCl}}$$

MCQ

4. (A) V = AgCN $W = LiAlH_4$ (B) $W = LiAlH_4$ $Q = AgNO_2$ (C) $W = NaBH_4$ $S = Ph-CH_2-NH_2$ (D) $Q = KNO_2$ S = Benzenamine

Ans. (AB)

MCQ

Which of the following compounds react with Ph-SNa, followed by reaction with Na₂O₂ and 5. BaCl₂, gives positive carius test?

(AB) Ans.

Sol. Organic compound heated in a carius tube with sodium peroxide/fuming HNO₃. Sulphur present in the compound is oxidised to sulphuric acid. When reacted with excess with BaCl₂ ----> BaSO₄ (precipitate is formed)

MCO

6. In which of the following option/s both the complexes are tetrahedral?

- (A) $[Cu(CN)_4]^{3-}$
- $[Cu(py)_4]^+$ $[Ni(CN)_4]^2$ (B) [Ni(CO)₄]
- $[CoCl_4]^2$ $(C) [Co(CO)_4]^-$ (D) $[Fe(CO)_4]^2$ [FeCl₄]

(ABD) Ans.

Sol.
$$[Cu(CN)_4]^{3-}$$
 : sp³
 $[Cu(py)_4]^+$: sp³
 $[Ni(CO)_4]$: sp³
 $[Ni(CN)_4]^{2-}$: dsp²

$$[N_1(CN)_4]^2$$
 : dsp^2
 $[Co(CO)_4]^-$: sp^3

$$[Co(CO)_4]^-$$
 : sp³
 $[CoCl_4]^{2-}$: sp³
 $[Fe(CO)_4]^{2-}$: sp³

$$[Fe(CO)_4]^2$$
 : sp³ $[FeCl_4]^-$: sp³

MCQ

7. For a reaction
$$2x + y \longrightarrow P$$
 $\frac{dP}{dt} = k[x]$

Starting with 2 moles of x and 1 mole of y. At t = 50 sec y is found to be 0.5 mole. Select correct options

(A)
$$\left(-\frac{dx}{dt}\right)_{t=50 \text{ sec}} = 13.86 \times 10^{-3}$$

(B)
$$\left(-\frac{dy}{dt}\right)_{t=10sec} = 3.46 \times 10^{-3}$$

(C)
$$K = 13.87 \times 10^{-4}$$

(D) Half life
$$= 50 \text{ sec}$$

(ABD) Ans.

Sol.
$$2x + y \longrightarrow P$$

$$t = 0$$
 2mol 1mole

$$t = 50 sec 1mol$$
 0.5 mole

(A)
$$\frac{1}{2}\left(-\frac{dx}{dt}\right) = -\frac{dy}{dt} = \frac{dP}{dt} = k[x]$$

$$\frac{-\mathrm{dx}}{\mathrm{dt}} = 2\mathrm{k}[\mathrm{x}]$$

$$=2\times\frac{\ln 2}{100}\times1$$

$$=\frac{\ln 2}{50}=13.86\times10^{-3}$$

(B)
$$\left(-\frac{dy}{dt}\right) = k[x]$$

$$= \frac{\ln^2}{100} \times \frac{1}{2}$$

$$= \frac{0.693}{100} \times \frac{1}{2}$$

$$= 3.46 \times 10^{-3}$$
(D) $\left(t_{\frac{1}{2}}\right)_x = \left(t_{\frac{1}{2}}\right)_y = 50 \text{ sec}$

$$\frac{\ln 2}{2k} = 50$$

$$k = \frac{\ln 2}{100}$$

$$= \frac{0.693}{100}$$

$$= 6.93 \times 10^{-3}$$

MCQ

8. Which of the following options are correct -

(A) H₃PO₃ is a monobasic acid

(B) P–H bond is H₃PO₃ is non ionisable in water

(C) $H_3PO_3 \xrightarrow{\Delta} PH_3 + H_3PO_4$

(D) H₃PO₃ can act as reducing agent while H₃PO₄ can not.

(C,D)Ans.

Sol.
$$H_3PO_3 \longrightarrow H \nearrow OH$$
, Basicity = 2

 $H_3PO_3 \xrightarrow{\Delta} PH_3 + H_3PO_4$

H₃PO₃ has phosphorous In(+)5 oxidation state so, cannot act as reducing agent.

Comprehension

5.6 g of an impure iron sample reacts completely with HCl and the solution is made upto 250 ml. 25 ml of this solution requires 12.5 ml of 0.03M KMnO₄

Determine number of moles of Fe²⁺ in $x \times 10^{-2}$ in original solution, then find out value of x. 9.

1.875 Ans.

10. % purity of iron sample

18.75 % Ans.

Sol. (1)
$$Fe^{2^+} + MnO_4^- \longrightarrow Mn^{2^+} + Fe^{3^+}$$

$$(v.f.)_{KMnO_4} = 5$$

 $(v.f.)_{Ee^{2+}} = 1$

For 25 ml

Meq of Fe²⁺ = Meq of KMnO₄
=
$$0.03 \times 5 \times 12.5$$

For 250 ml

Meq of Fe²⁺ =
$$\frac{0.03 \times 5 \times 12.5}{25} \times 250$$

$$\text{(mole)}_{\text{Fe}^{2+}} \times 1 \times 1000 = \frac{0.03 \times 5 \times 12.5 \times 250}{25}$$

$$\text{(mole)}_{\text{Fe}^{2+}} = \frac{18.75}{1000} = 1.875 \times 10^{-2}$$

Ans. 1.875

(2) Weight of
$$Fe^{2+} = \frac{18.75}{1000} \times 56 = 1.05 \text{ gram}$$

% purity of Fe²⁺ =
$$\frac{W_{Fe^{2+}}}{W_{sample}} \times 100 = \frac{1.05}{5.6} \times 100$$

Ans. 18.75 %

Comprehension

Limiting molar conductivity of weak monobasic acid (HA) is $4 \times 10^2 \text{ Scm}^2 \text{mol}^{-1}$ Degree of dissociation of aq. solution of HA is α and its molar conductivity is $y \times 10^2 \text{ Scm}^2\text{mol}^{-1}$. On dilution to 20 times by adding water, molar conductivity changes to $3y \times 10^2 \text{ Scm}^2 \text{mol}^{-1}$.

- 11. Calculate the value of α .
- **12.** Calculate the value of y.
- Sol. Original solution

$$\alpha_1 = \frac{\Lambda_m}{\Lambda_m^0} = \frac{y}{4} \qquad ...(1)$$

$$\frac{C_1 \alpha_1^2}{1 - \alpha_1} = K_a$$

$$\Rightarrow \frac{\alpha_1^2}{1-\alpha_1} = \frac{K_a}{C_1} \qquad ...(2)$$

After dilution

$$\alpha_2 = \frac{3y}{4} \qquad \dots (3)$$

$$\frac{C_2\alpha_2^2}{1-\alpha_2} = K_a$$

$$\Rightarrow \frac{\alpha_2^2}{1-\alpha_2} = \frac{K_a}{C_2} \qquad ...(4)$$

$$\alpha_2 = 3\alpha_1$$

and
$$\frac{C_1}{C_2} = \frac{1}{20}$$

Now (4)/(2)

$$\frac{\frac{\alpha_2^2}{1 - \alpha_2}}{\frac{\alpha_1^2}{1 - \alpha_1}} = \frac{\frac{K_a}{C_2}}{\frac{K_a}{C_1}} = \frac{C_1}{C_2}$$

$$\frac{\alpha_2^2}{1-\alpha_2} = 20 \frac{\alpha_1^2}{1-\alpha_1}$$

$$\frac{9\alpha_1^2}{1 - 3\alpha_1} = \frac{20\alpha_1^2}{1 - \alpha_1}$$

$$9 - 9\alpha_1 = 20 - 60\alpha_1$$

$$11 = 51\alpha_1$$

$$\Rightarrow \alpha_1 = \frac{11}{51} = 0.22$$

from (1)
$$y = 4\alpha = 0.86$$

Comprehension

Bond dissociation energy of the following reactions are given.

$$CH_4 \longrightarrow \dot{C}H_3 + \dot{H}$$
 105Kcal/mol

$$Cl-Cl \longrightarrow \dot{C}l+\dot{C}l$$
 58Kcal/mol

$$HCl \longrightarrow H + Cl$$
 85 Kcal/mol

$$CH_3 - Cl \longrightarrow \dot{C}H_3 + \dot{C}l$$
 103 Kcal/mol

Bond dissociation energy depends on stability of free radical & s-character.

13. Match the column

(Q)
$$Ph - CH_2 - H$$
 (2) 93 Kcal/mol

Ans. (P)
$$\rightarrow$$
 (2); (Q) \rightarrow (1); (R) \rightarrow (4); (S) \rightarrow (3)

14. Which of the following is correct for chlorination of methane?

(A) Net reaction $\Delta H_{reaction} = 25$ and reaction is exothermic

(B)
$$\dot{C}l + CH_4 \longrightarrow \dot{C}H_3 + HCl; \Delta H = -2$$

(C)
$$\dot{C}H_3 + Cl_2 \longrightarrow CH_3Cl + \dot{C}l \Delta H = 47$$

(D) None of above

(A) Ans.

Integer

15. (X) gm of Sn dissolved in HCl and salt form is completely reacted with (Y) gm of Ph–NO₂ in HCl and organic salt form weigh 1.29 gm. Find (X) and (Y):

Ans.
$$X = 3.57, Y = 1.23$$

Moles of organic salt = $\frac{1.29}{129}$ = 0.01 Sol.

$$Sn + 2 HCl \longrightarrow SnCl_2 + H_2$$

0.03 mole

0.03 mole

0.03 mole 0.01 mole

0.01 mole

$$W_{\text{Nitrobenzene}} = 0.01 \times 123 = 1.23 \text{ g}$$

$$W_{Sn} = 0.03 \times 119 = 3.57 \text{ g}$$

Integer

 $ClO_2 \xrightarrow{O_3} Product$ **16.**

Average oxidation state of Cl in product is -

Ans.

 $ClO_2 + O_2 \longrightarrow Cl_2O_6 + O_2$ Sol.

Integer

He atom is struck by photon of wavelength 330 nm. Determine change in velocity in cm/s? $N_A=6\times 10^{23}$; $h=6.6\times 10^{-34}$ 17.

Ans.

 $m\Delta V = \frac{h}{\lambda}$ Sol.

$$\frac{4}{6 \times 10^{23} \times 10^3} \, \Delta V = \frac{6.6 \times 10^{-34}}{330 \times 10^{-9}}$$

$$\Delta V = \frac{10^{-25}}{50} \times \frac{3 \times 10^{27}}{5 \times 4} = \frac{300}{250 \times 4} = 0.3 \text{ m/s}$$

= 30 cm/s

